

Mathematics (9709)

Paper 1: Pure Mathematics 1 (P1)

2020-2021

PURE MATHEMATICS

Mensuration

Volume of sphere = $\frac{4}{3}\pi r^3$

Surface area of sphere = $4\pi r^2$

Volume of cone or pyramid = $\frac{1}{3} \times$ base area \times height

Area of curved surface of cone = $\pi r \times \text{slant height}$

Arc length of circle = $r\theta$ (θ in radians)

Area of sector of circle $=\frac{1}{2}r^2\theta$ (θ in radians)

Algebra

For the quadratic equation $ax^2 + bx + c = 0$:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

For an arithmetic series:

$$u_n = a + (n-1)d$$
, $S_n = \frac{1}{2}n(a+l) = \frac{1}{2}n\{2a + (n-1)d\}$

For a geometric series:

$$u_n = ar^{n-1},$$
 $S_n = \frac{a(1-r^n)}{1-r} \quad (r \neq 1),$ $S_{\infty} = \frac{a}{1-r} \quad (|r| < 1)$

Binomial series:

$$(a+b)^n = a^n + \binom{n}{1} a^{n-1}b + \binom{n}{2} a^{n-2}b^2 + \binom{n}{3} a^{n-3}b^3 + \dots + b^n, \text{ where } n \text{ is a positive integer}$$
and
$$\binom{n}{r} = \frac{n!}{r!(n-r)!}$$

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \frac{n(n-1)(n-2)}{3!}x^3 + \dots$$
, where *n* is rational and $|x| < 1$

Trigonometry

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$\cos^2 \theta + \sin^2 \theta = 1, \qquad 1 + \tan^2 \theta = \sec^2 \theta, \qquad \cot^2 \theta + 1 = \csc^2 \theta$$

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

$$\sin 2A = 2\sin A \cos A$$

$$\cos 2A = \cos^2 A - \sin^2 A = 2\cos^2 A - 1 = 1 - 2\sin^2 A$$

$$\tan 2A = \frac{2\tan A}{1 - \tan^2 A}$$

Principal values:

$$-\frac{1}{2}\pi \leqslant \sin^{-1}x \leqslant \frac{1}{2}\pi$$
, $0 \leqslant \cos^{-1}x \leqslant \pi$, $-\frac{1}{2}\pi < \tan^{-1}x < \frac{1}{2}\pi$

Differentiation

$$f(x) f'(x)$$

$$x^{n} nx^{n-1}$$

$$\ln x \frac{1}{x}$$

$$e^{x} e^{x} e^{x}$$

$$\sin x \cos x$$

$$\cos x -\sin x$$

$$\tan x \sec^{2} x$$

$$\sec x \sec x \tan x$$

$$\csc x -\csc x \cot x$$

$$\cot x -\csc^{2} x$$

$$\tan^{-1} x \frac{1}{1+x^{2}}$$

$$uv v\frac{du}{dx} + u\frac{dv}{dx}$$

$$\frac{u}{v} v\frac{du}{dx} - u\frac{dv}{dx}$$

$$\frac{dv}{dx} - u\frac{dv}{dx}$$

$$\frac{dv}{dx} + u\frac{dv}{dx}$$

Integration

(Arbitrary constants are omitted; a denotes a positive constant.)

$$f(x) \qquad \int f(x) dx$$

$$x^{n} \qquad \frac{x^{n+1}}{n+1} \qquad (n \neq -1)$$

$$\frac{1}{x} \qquad \ln|x|$$

$$e^{x} \qquad e^{x}$$

$$\sin x \qquad -\cos x$$

$$\cos x \qquad \sin x$$

$$\sec^{2} x \qquad \tan x$$

$$\frac{1}{x^{2} + a^{2}} \qquad \frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right)$$

$$\frac{1}{x^{2} - a^{2}} \qquad \frac{1}{2a} \ln\left|\frac{x - a}{x + a}\right| \qquad (x > a)$$

$$\frac{1}{a^{2} - x^{2}} \qquad \frac{1}{2a} \ln\left|\frac{a + x}{a - x}\right| \qquad (|x| < a)$$

$$\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx$$

$$\int \frac{f'(x)}{f(x)} dx = \ln|f(x)|$$

Vectors

If
$$\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}$$
 and $\mathbf{b} = b_1 \mathbf{i} + b_2 \mathbf{j} + b_3 \mathbf{k}$ then
$$\mathbf{a}.\mathbf{b} = a_1 b_1 + a_2 b_2 + a_3 b_3 = |\mathbf{a}| |\mathbf{b}| \cos \theta$$

MECHANICS

Uniformly accelerated motion

$$v = u + at$$
, $s = \frac{1}{2}(u + v)t$, $s = ut + \frac{1}{2}at^2$, $v^2 = u^2 + 2as$

FURTHER MECHANICS

Motion of a projectile

Equation of trajectory is:

$$y = x \tan \theta - \frac{gx^2}{2V^2 \cos^2 \theta}$$

Elastic strings and springs

$$T = \frac{\lambda x}{l}, \qquad E = \frac{\lambda x^2}{2l}$$

Motion in a circle

For uniform circular motion, the acceleration is directed towards the centre and has magnitude

$$\omega^2 r$$
 or $\frac{v^2}{r}$

Centres of mass of uniform bodies

Triangular lamina: $\frac{2}{3}$ along median from vertex

Solid hemisphere of radius r: $\frac{3}{8}r$ from centre

Hemispherical shell of radius r: $\frac{1}{2}r$ from centre

Circular arc of radius r and angle 2α . $\frac{r \sin \alpha}{\alpha}$ from centre

Circular sector of radius r and angle 2α : $\frac{2r\sin\alpha}{3\alpha}$ from centre

Solid cone or pyramid of height $h: \frac{3}{4}h$ from vertex

PROBABILITY & STATISTICS

Summary statistics

For ungrouped data:

$$\overline{x} = \frac{\sum x}{n}$$
, standard deviation $= \sqrt{\frac{\sum (x - \overline{x})^2}{n}} = \sqrt{\frac{\sum x^2}{n} - \overline{x}^2}$

For grouped data:

$$\overline{x} = \frac{\sum xf}{\sum f}$$
, standard deviation $= \sqrt{\frac{\sum (x - \overline{x})^2 f}{\sum f}} = \sqrt{\frac{\sum x^2 f}{\sum f} - \overline{x}^2}$

Discrete random variables

$$E(X) = \sum xp$$
, $Var(X) = \sum x^2 p - \{E(X)\}^2$

For the binomial distribution B(n, p):

$$p_r = \binom{n}{r} p^r (1-p)^{n-r}, \qquad \mu = np, \qquad \sigma^2 = np(1-p)$$

For the geometric distribution Geo(p):

$$p_r = p(1-p)^{r-1},$$
 $\mu = \frac{1}{p}$

For the Poisson distribution $Po(\lambda)$

$$p_r = e^{-\lambda} \frac{\lambda^r}{r!}, \qquad \mu = \lambda, \qquad \sigma^2 = \lambda$$

Continuous random variables

$$E(X) = \int x f(x) dx$$
, $Var(X) = \int x^2 f(x) dx - \{E(X)\}^2$

Sampling and testing

Unbiased estimators:

$$\overline{x} = \frac{\sum x}{n}$$
, $s^2 = \frac{\sum (x - \overline{x})^2}{n - 1} = \frac{1}{n - 1} \left(\sum x^2 - \frac{(\sum x)^2}{n} \right)$

Central Limit Theorem:

$$\overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

Approximate distribution of sample proportion:

$$N\left(p, \frac{p(1-p)}{n}\right)$$

THE NORMAL DISTRIBUTION FUNCTION

If Z has a normal distribution with mean 0 and variance 1, then, for each value of z, the table gives the value of $\Phi(z)$, where

$$\Phi(z) = P(Z \leqslant z).$$

Z	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5 ADD	6	7	8	9
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359	4	8	12	16	20	24	28	32	36
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753	4	8	12	16	20	24	28	32	36
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141	4	8	12	15	19	23	27	31	35
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517	4	7	11	15	19	22	26	30	34
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879	4	7	11	14	18	22	25	29	32
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224	3	7	10	14	17	20	24	27	31
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549	3	7	10	13	16	19	23	26	29
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852	3	6	9	12	15	18	21	24	27
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133	3	5	8	11	14	16	19	22	25
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389	3	5	8	10	13	15	18	20	23
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621	2	5	7	9	12	14	16	19	21
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830	2	4	6	8	10	12	14	16	18
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015	2	4	6	7	9	11	13	15	17
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177	2	3	5	6	8	10	11	13	14
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319	1	3	4	6	7	8	10	11	13
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441	1	2	4	5	6	7	8	10	11
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545	1	2	3	4	5	6	7	8	9
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633	1	2	3	4	4	5	6	7	8
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706	1	1	2	3	4	4	5	6	6
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767	1	1	2	2	3	4	4	5	5
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817	0	1	1	2	2	3	3	4	4
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857	0	1	1	2	2	2	3	3	4
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890	0	1	1	1	2	2	2	3	3
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916	0	1	1	1	1	2	2	2	2
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936	0	0	1	1	1	1	1	2	2
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952	0	0	0	1	1	1	1	1	1
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964	0	0	0	0	1	1	1	1	1
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974	0	0	0	0	0	1	1	1	1
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981	0	0	0	0	0	0	0	1	1
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986	0	0	0	0	0	0	0	0	0

Critical values for the normal distribution

If Z has a normal distribution with mean 0 and variance 1, then, for each value of p, the table gives the value of z such that

$$P(Z \leq z) = p$$
.

p	0.75	0.90	0.95	0.975	0.99	0.995	0.9975	0.999	0.9995
Z	0.674	1.282	1.645	1.960	2.326	2.576	2.807	3.090	3.291

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS

Paper 1 Pure Mathematics 1

9709/12

February/March 2020
1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages. Blank pages are indicated.

Determine whether f is an increasing function, a decreasing function or neither.

Describe fully the ransformation.	two single trai	nsformations w	hich have been	combined to give	e the resulti [
	•••••	•••••			

The diagram shows part of the curve with equation $y = x^2 + 1$. The shaded region enclosed by the curve, the y-axis and the line y = 5 is rotated through 360° about the y-axis.

Find the volume obtained.	[4]

Find the	e x-coordina	te of P .							
									•••••
•••••									
•••••									
•••••									
•••••									
•••••				•••••					
•••••									
•••••	•••••	••••••	•••••	•••••	••••••	••••••	••••••	••••••	••••••
•••••	•••••••	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••••	••••••	••••••	••••••
•••••	••••••	••••••	••••••	•••••	•••••		••••••	••••••	•••••
•••••	•••••	•••••	•••••	•••••	•••••		•••••	•••••	••••••

5	Solve	the e	equation
J	SOLVE	uic v	cquanon

	$\frac{\tan\theta + 3\sin\theta + 2}{\tan\theta - 3\sin\theta + 1} = 2$
for $0^{\circ} \le \theta \le 90^{\circ}$.	[5]

	Find the possible values of the	he constant a.	[
		$\frac{1}{\sqrt{7}}$ in the expansion.	[
)	Hence find the coefficient of	X'	
)	Hence find the coefficient of	<i>x</i> ·	
)	Hence find the coefficient of	<i>x</i>	
)	Hence find the coefficient of		
)	Hence find the coefficient of		
)	Hence find the coefficient of		
)	Hence find the coefficient of		

The diagram shows a sector AOB which is part of a circle with centre O and radius 6 cm and with angle AOB = 0.8 radians. The point C on OB is such that AC is perpendicular to OB. The arc CD is part of a circle with centre O, where O lies on OA.

Find the area of the shaded region.	[6]

	voman's basic salary for her first year with a particular company is \$30 000 and at the end of the r she also gets a bonus of \$600.
(a)	For her first year, express her bonus as a percentage of her basic salary. [1]
	the end of each complete year, the woman's basic salary will increase by 3% and her bonus will rease by \$100.
(b)	Express the bonus she will be paid at the end of her 24th year as a percentage of the basic salary paid during that year. [5]

	•••••
	•••••
	••••••
	••••••
	•••••
function f is defined by $f(x) = 2x^2 + 12x + 11$ for $x \le -4$. Find an expression for $f^{-1}(x)$ and state the domain of f^{-1} .	
function f is defined by $f(x) = 2x^2 + 12x + 11$ for $x \le -4$. Find an expression for $f^{-1}(x)$ and state the domain of f^{-1} .	

The function g is defined by g(x) = 2x - 3 for $x \le k$.

(c)	For the case where $k = -1$, solve the equation $fg(x) = 193$.	[2]
(d)	State the largest value of k possible for the composition fg to be defined.	[1]

()		
(a)	Find the value of a .	[3
		•••••
		•••••
(b)	Determine the nature of the stationary point.	[3
(b)	Determine the nature of the stationary point.	[3
(b)	Determine the nature of the stationary point.	
(b)		
(b)		[3
(b)		

)	Find the equation of the curve.	[4]
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		••••••
		••••••
		••••••

11	(a)	Solve the equation $3 \tan^2 x - 5 \tan x - 2 = 0$ for $0^\circ \le x \le 180^\circ$.		[4]
				••••
				••••
				••••
				••••
				••••
				••••
				••••
				••••
				••••
				••••
			•••••	••••
			••••••	••••
				••••
				••••
	(b)	Find the set of values of k for which the equation $3 \tan^2 x - 5 \tan x + k = 0$ has no	solutions.	[2]
				••••
				••••
				••••
				••••
				••••
				••••
				••••

•••••	• • • • • • • • • • • • • • • • • • • •								
		•	•••••	••••••	••••••	••••••	•••••	•	
	•••••		•••••			•••••	•••••		
• • • • • • • • • • • • • • • • • • • •		•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	••••••	
			•••••	•••••			•••••		
•••••									
• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	••••••	•••••
•••••			•••••	••••••		•••••	•••••		
• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	••••••	•••••
			•••••	•••••			•••••		
• • • • • • • • • • • • • • • • • • • •	•••••••	•••••••	••••••	••••••	••••••	••••••	••••••	•••••••••	
• • • • • • • • • • • • • • • • • • • •	•••••		•••••		•••••	•••••	•••••		
• • • • • • • • • • • • • • • • • • • •	•••••••	•••••••	••••••	••••••	••••••	••••••	••••••	•••••••••	
			•••••	••••••	••••••	••••••	•••••	••••••	
				••••••					
•••••	•••••		•••••	•••••			•••••		•••••
	•••••								
•••••		•••••	•••••		•••••	•••••	•••••	•••••	
•••••							•••••		

12 A diameter of a circle C_1 has end-points at (-3, -5) and (7, 3).

Find an equation of the circle C_1 .	[3]

The circle C_1 is translated by $\left({8\atop 4} \right)$ to give circle C_2 , as shown in the diagram.

(b)	Find an equation of the circle C_2 .	[2]

The two circles intersect at points R and S.

(c)	Show that the equation of the line RS is $y = -2x + 13$.	[4]
(d)	Hence show that the x-coordinates of R and S satisfy the equation $5x^2 - 60x + 159$	$\Theta = 0.$ [2]
(4)	Thence show that the st economics of it and a satisfy the equation as a contract of its	· (2)
		•••••
		•••••
		•••••
		•••••

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/11

Paper 1 Pure Mathematics 1

May/June 2020

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

Find the first t	erm and the com	ımon differen	ce of the pro	gression.		
			••••••		•••••	
		•••••	•••••	•••••	•••••	
	•••••		••••••	•••••	•••••	
		•••••	••••••	•••••	•••••	
	,				•••••	

.	1 0 1			$-\frac{2}{x}\Big)^{8}$ is 74		
Find the	e value of the p	positive cons	stant <i>k</i> .			
•••••				 		
•••••	•••••		• • • • • • • • • • • • • • • • • • • •	 •••••	•••••••	••••••••••
•••••				 		
•••••				 		
•••••				 •••••	••••••	•••••
•••••				 	•••••	
•••••				 		
•••••				 •••••	••••••	•••••
•••••				 		
•••••				 		
••••••			••••••	 ••••••		••••••
•••••				 		
•••••				 		
••••••			••••••	 ••••••		••••••
•••••				 		
•••••				 		

a)	
ш)	Write down an expression for the selling price of the necklace n years later and hence find the selling price in 2008. [3]
))	The company that makes the necklace only sells one each year. Find the total amount of money obtained in the ten-year period starting in the year 2000. [2]
))	
))	obtained in the ten-year period starting in the year 2000. [2]
))	obtained in the ten-year period starting in the year 2000. [2]
))	obtained in the ten-year period starting in the year 2000. [2]
)	obtained in the ten-year period starting in the year 2000. [2]
))	obtained in the ten-year period starting in the year 2000. [2]
()	obtained in the ten-year period starting in the year 2000. [2]
(b)	obtained in the ten-year period starting in the year 2000. [2]

© UCLES 2020 9709/11/M/J/20

The diagram shows the graph of y = f(x), where $f(x) = \frac{3}{2}\cos 2x + \frac{1}{2}$ for $0 \le x \le \pi$.

(a)	State the range of f.	[2]

A function g is such that g(x) = f(x) + k, where k is a positive constant. The x-axis is a tangent to the curve y = g(x).

(b)	State the value of k and hence describe fully the transformation that maps the curve $y = f(x)$ or to $y = g(x)$.

(c)	State the equation of the curve which is the reflection of $y = f(x)$ in the x-axis. Give your ans in the form $y = a \cos 2x + b$, where a and b are constants.	wer [1]
		•••••

The equation of a line is y = mx + c, where m and c are constants, and the equation of a curve is

Given instead that $m = -4$, find the set of values of c for which the line intersects the c two distinct points.
Given instead that $m=-4$, find the set of values of c for which the line intersects the c two distinct points.
Given instead that $m=-4$, find the set of values of c for which the line intersects the c two distinct points.
Given instead that $m=-4$, find the set of values of c for which the line intersects the c two distinct points.
Given instead that $m = -4$, find the set of values of c for which the line intersects the c two distinct points.
Given instead that $m = -4$, find the set of values of c for which the line intersects the c two distinct points.
Given instead that $m = -4$, find the set of values of c for which the line intersects the c two distinct points.
Given instead that $m = -4$, find the set of values of c for which the line intersects the c two distinct points.
Given instead that $m = -4$, find the set of values of c for which the line intersects the c two distinct points.
Given instead that $m = -4$, find the set of values of c for which the line intersects the c two distinct points.
Given instead that $m = -4$, find the set of values of c for which the line intersects the c two distinct points.
Given instead that $m = -4$, find the set of values of c for which the line intersects the c two distinct points.
Given instead that $m = -4$, find the set of values of c for which the line intersects the c two distinct points.
two distinct points.
two distinct points.

© UCLES 2020 9709/11/M/J/20

6	Functions	f and	g are	defined	for <i>x</i>	$\in \mathbb{R}$ by
---	-----------	-------	-------	---------	--------------	---------------------

$$f: x \mapsto \frac{1}{2}x - a,$$

 $g: x \mapsto 3x + b,$

$$g: x \mapsto 3x + b$$

where a and b are constants.

(a)	Given that $gg(2) = 10$ and $f^{-1}(2) = 14$, find the values of a and b .	[4]
(b)	Using these values of a and b , find an expression for $gf(x)$ in the form $cx + d$, where c and	d oro
(D)	constants.	[2]
		•••••
		•••••

	•••••
	•••••

	Hence solve the equation	$\cos \theta$	$1 + \sin \theta$	$\sin \theta$		
••			•••••			
•••						•••••
••						
••		••••••	••••••	•••••	•••••	••••••
••			••••••	•••••		••••••
••		••••••	••••••			••••••
••						•••••
•••						•••••
••						
••		•••••••••••	•••••••	••••••	••••••	•••••
••			•••••••	•••••		•••••
••						
••						
•••						
•••						
••		•••••	•••••••	•••••		•••••
••			••••••			
••						

In the diagram, ABC is a semicircle with diameter AC, centre O and radius 6 cm. The length of the arc AB is 15 cm. The point X lies on AC and BX is perpendicular to AX.

Find the perimeter of the shaded region BXC .	[6]

© UCLES 2020 9709/11/M/J/20

The equation of a curve is $y = (3 - 2x)^3 + 24x$.

9

(a)	Find expressions for $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$.	[4]
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••

	ordinates of ea						
			•••••				•••••
							•••••
			•••••				
•••••	•				••••••	•••••	••••
••••••		••••••	•••••	•••••	••••••	••••••	•••••
••••••			•••••	•••••	••••••		••••
					•••••		••••
•••••			•••••	••••••	•••••		••••
							••••
Determine	the nature of e	each stationa	ry point.				
•••••	•		••••••		••••••	•••••	•••••
•••••		•••••	•••••	••••••	••••••	••••••	•••••
•••••	•••••••				•••••	•••••	••••
			••••••		••••••		••••
							••••
	•••••						
					•••••		

,	Find the equation of the circle, C , for which AB is a diameter.	[4]
1)	This the equation of the circle, C, for which AB is a diameter.	[+]
		•••••
		•••••
		•••••
		••••••
		••••••
		•••••
		•••••
		•••••

•••••••		••••••	•		•••••••••	•••••••	••••••	••••••
••••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •			••••••	•••••	••••••
		•••••						•••••
•••••								
•••••••	••••	•••••	•			•••••••	•	••••••
•••••	•••••	••••••	•		•••••••••••	•••••	•••••	••••••
		•••••						•••••
••••••	•••••	•••••	•••••			•••••		
				• • • • • • • • • • • • • • • • • • • •	••••••	• • • • • • • • • • • • • • • • • • • •		
Find the equ	ation of t	he circle	which is	the reflection	on of circle		ne <i>T</i> .	
Find the equ	ation of t	he circle	which is	the reflection	on of circle			
Find the equ	uation of t	he circle	which is	the reflection	on of circle			
Find the equ	uation of t	he circle	which is	the reflection	on of circle			
Find the equ	ation of t	he circle	which is	the reflection	on of circle			
Find the equ	ation of t	he circle	which is	the reflection	on of circle			
Find the equ	ation of t	he circle	which is	the reflection	on of circle			
Find the equ	ation of t	he circle	which is	the reflection	on of circle			
Find the equ	ation of t	he circle	which is	the reflection	on of circle			
Find the equ	lation of t	he circle	which is	the reflection	on of circle			
Find the equ	ation of t	he circle	which is	the reflection	on of circle			
Find the equ	lation of t	he circle	which is	the reflection	on of circle			
Find the equ	lation of t	he circle	which is	the reflection	on of circle			

The diagram shows part of the curve $y = \frac{8}{x+2}$ and the line 2y + x = 8, intersecting at points A and B. The point C lies on the curve and the tangent to the curve at C is parallel to AB.

Find, by calculation, the coordinates of A , B and C .	[6]
	,
	,
	,
	,
	,

through 360° about the <i>x</i> -axis.			
	 •••••		•••••
	 •••••		
	 ••••••	•••••	•••••
	 		•••••

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/12

Paper 1 Pure Mathematics 1

May/June 2020

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 16 pages. Blank pages are indicated.

1 (a)	Find the coefficient of x^2 in the expansion of $\left(x - \frac{2}{x}\right)^6$.	[2]
(b)	Find the coefficient of x^2 in the expansion of $(2 + 3x^2) \left(x - \frac{2}{x}\right)^6$.	[3]

	Express the equation $3\cos\theta = 8\tan\theta$ as a quadratic equation in $\sin\theta$.	
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
(b)	Hence find the acute angle, in degrees, for which $3\cos\theta = 8\tan\theta$.	
(b)	Hence find the acute angle, in degrees, for which $3\cos\theta = 8\tan\theta$.	
(b)	Hence find the acute angle, in degrees, for which $3\cos\theta = 8\tan\theta$.	
(b)	Hence find the acute angle, in degrees, for which $3\cos\theta=8\tan\theta$.	
(b)		
(b)	Hence find the acute angle, in degrees, for which $3\cos\theta=8\tan\theta$.	
(b)		

A w	reather balloon in the shape of a sphere is being inflated by a pump. The volume of the balloon easing at a constant rate of 600 cm ³ per second. The balloon was empty at the start of pumping
(a)	Find the radius of the balloon after 30 seconds.
(b)	Find the rate of increase of the radius after 30 seconds.

Find the value	ue of n for which	ch the sum of	f the first <i>n</i> t	erms is 84.			[
•••••		•••••					•••••
		•••••			•••••	••••••	•••••

5 The function f is defin	$ned for x \in \mathbb{R} by$
---------------------------	-------------------------------

 $f: x \mapsto a - 2x$,

where a is a constant.

	Express $ff(x)$ and $f^{-1}(x)$ in terms of a and x .	[4]
(b)	Given that $ff(x) = f^{-1}(x)$, find x in terms of a .	[2]
(b)	Given that $ff(x) = f^{-1}(x)$, find x in terms of a .	[2]
(b)	Given that $ff(x) = f^{-1}(x)$, find x in terms of a .	
(b)		
(b)		

()	Given that the line $y = 2x + 3$ is a tangent to the curve, find the value of k .	
		•••••
		•••••
	now given that $k = 2$. Express the equation of the curve in the form $y = 2(x + a)^2 + b$, where a and b are hence state the coordinates of the vertex of the curve.	constant
	Express the equation of the curve in the form $y = 2(x + a)^2 + b$, where a and b are	constant
	Express the equation of the curve in the form $y = 2(x + a)^2 + b$, where a and b are	constant
	Express the equation of the curve in the form $y = 2(x + a)^2 + b$, where a and b are	constant
	Express the equation of the curve in the form $y = 2(x + a)^2 + b$, where a and b are	constant
	Express the equation of the curve in the form $y = 2(x + a)^2 + b$, where a and b are	constant
	Express the equation of the curve in the form $y = 2(x + a)^2 + b$, where a and b are	constant
	Express the equation of the curve in the form $y = 2(x + a)^2 + b$, where a and b are	constant
	Express the equation of the curve in the form $y = 2(x + a)^2 + b$, where a and b are	constant

In the diagram, OAB is a sector of a circle with centre O and radius 2r, and angle $AOB = \frac{1}{6}\pi$ radians. The point C is the midpoint of OA.

(a)	Show that the exact length of BC is $r\sqrt{5-2\sqrt{3}}$.	[2]

,	Find the exact perimeter of the shaded region.	[2
		••••
		••••
		•••••
	Find the arrest once of the choded recion	r.
	Find the exact area of the shaded region.]
	Find the exact area of the shaded region.	
	Find the exact area of the shaded region.	
	Find the exact area of the shaded region.	
	Find the exact area of the shaded region.	
	Find the exact area of the shaded region.	

(a)

The diagram shows part of the curve $y = \frac{6}{x}$. The points (1, 6) and (3, 2) lie on the curve. The shaded region is bounded by the curve and the lines y = 2 and x = 1.

Find the volume generated when the shaded region is rotated through 360° about the y-axis . [5]

line $y = 2x$.	

9 Functions f and g are such that

$$f(x) = 2 - 3\sin 2x \quad \text{for } 0 \le x \le \pi,$$

$$g(x) = -2f(x) \quad \text{for } 0 \le x \le \pi.$$

(a) State the ranges of f and g.

.....

[3]

[2]

The diagram below shows the graph of y = f(x).

(b) Sketch, on this diagram, the graph of y = g(x).

The function h is such that

$$h(x) = g(x + \pi)$$
 for $-\pi \le x \le 0$.

(c) Describe fully a sequence of transformations that maps the curve y = f(x) on to y = h(x). [3]

.....

10	The equation of a curve is $y = 54x - (2x - 7)^3$.	
	(a) Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$.	[4]

	•••••	•••••	•••••	
• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	•••••

Find the coordinates of each of the stationary points on the curve.	[3]
	•••
	•••
	•••
	•••
	•••
	·•••
	· • • •

(b)

(c)

Determine the nature of each of the stationary points.	[2]

(a)	Find the radius of the circle and the coordinates of C .	
()		
		••••••
		•••••
The	s point $P(1, 2)$ lies on the circle.	
	s point $P(1, 2)$ lies on the circle.	
	spoint $P(1, 2)$ lies on the circle. Show that the equation of the tangent to the circle at P is $4y = 3x + 5$.	
	spoint $P(1, 2)$ lies on the circle. Show that the equation of the tangent to the circle at P is $4y = 3x + 5$.	
	spoint $P(1, 2)$ lies on the circle. Show that the equation of the tangent to the circle at P is $4y = 3x + 5$.	
	spoint $P(1, 2)$ lies on the circle. Show that the equation of the tangent to the circle at P is $4y = 3x + 5$.	
	spoint $P(1, 2)$ lies on the circle. Show that the equation of the tangent to the circle at P is $4y = 3x + 5$.	
	spoint $P(1, 2)$ lies on the circle. Show that the equation of the tangent to the circle at P is $4y = 3x + 5$.	
	spoint $P(1, 2)$ lies on the circle. Show that the equation of the tangent to the circle at P is $4y = 3x + 5$.	
	spoint $P(1, 2)$ lies on the circle. Show that the equation of the tangent to the circle at P is $4y = 3x + 5$.	
	spoint $P(1, 2)$ lies on the circle. Show that the equation of the tangent to the circle at P is $4y = 3x + 5$.	
	spoint $P(1, 2)$ lies on the circle. Show that the equation of the tangent to the circle at P is $4y = 3x + 5$.	

The point Q also lies on the circle and PQ is parallel to the x-axis.

(c)	Write down the coordinates of Q .	[2]
		•••••
		•••••
		•••••
The	tangents to the circle at P and Q meet at T .	
1110	tangents to the energia I and gineet at I.	
(d)	Find the coordinates of T .	[3]
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

1360524731

MATHEMATICS 9709/13

Paper 1 Pure Mathematics 1

May/June 2020

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

	•••••						•••••
•••••	•••••			••••••			
	•••••			•••••			
				••••••••	•••••		•••••
	•••••		••••••	•••••			••••••
			•••••				•••••
							•••••
	•••••			•••••			
••••••	•••••••••••	•••••	••••••	•••••••••	••••••	••••••	•••••
			•••••				•••••
							•••••
							•••••
•••••	•••••			•••••			
	••••••			••••••••	•••••		••••••
			••••••	•••••			••••••
							••••••
	•••••			••••••			

The equation of a curve is such that $\frac{dy}{dx} = 3x^{\frac{1}{2}} - 3x^{-\frac{1}{2}}$. It is given that the point (4, 7) lie	s on the curve.
Find the equation of the curve.	[4]
	•••••

3 In each of parts (a), (b) and (c), the graph shown with solid lines has equation y = f(x). The graph shown with broken lines is a transformation of y = f(x).

(a)

State, in terms of f, the equation of the graph shown with broken lines.

[1]

(b)

State, in terms of f, the equation of the graph shown with broken lines. [1]

(c)

State, in terms of f, the equation of the graph shown with broken lines.

[2]

.....

Expand $(1+a)^5$ in ascending powers of a up to and including the term in a^3 .	[1]
	•••••
	•••••
	•••••
	••••
Hence expand $[1 + (x + x^2)]^5$ in ascending powers of x up to and including the term in	x^3
simplifying your answer.	[3]
	• • • • •
	••••
	••••

The diagram shows a cord going around a pulley and a pin. The pulley is modelled as a circle with centre O and radius 5 cm. The thickness of the cord and the size of the pin P can be neglected. The pin is situated 13 cm vertically below O. Points A and B are on the circumference of the circle such that AP and BP are tangents to the circle. The cord passes over the major arc AB of the circle and under the pin such that the cord is taut.

Calculate the length of the cord.	[6]

)	Find the rate at which the y-coordinate is increasing when $x = 1$. [4]

•	
• •	•••••
	 •••••
• •	 •••••
	•••••
• •	•••••
• •	•••••
• •	•••••
• •	•••••
•	•••••
• •	•••••
•	
• •	 •••••
• •	 •••••

7	(-)	C1 414	$\tan \theta$	$\tan \theta$	2	[4]
7	(a)	Snow that	$\frac{1+\cos\theta}{1+\cos\theta}$	$\frac{1-\cos\theta}{1-\cos\theta}$	$= \frac{2}{\sin\theta\cos\theta}.$	[4]
			1 , 5000	1 6050		
		••••••	••••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	
		•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	
			•••••			
		•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	
		•••••	•••••	• • • • • • • • • • • • • • • • • • • •		
		•••••		• • • • • • • • • • • • • • • • • • • •		
		•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	
		•••••	•••••	• • • • • • • • • • • • • • • • • • • •		
			•••••	•••••		
		••••••	••••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	
		•••••	•••••	• • • • • • • • • • • • • • • • • • • •		
			•••••	• • • • • • • • • • • • • • • • • • • •		

(b)	Hanna salau tha associan	$\tan \theta$	$\tan \theta$	6	F 4 T
(D)	Hence solve the equation	$1 + \cos \theta$	$\frac{1-\cos\theta}{1-\cos\theta}$	$=\frac{1}{\tan\theta}$ for $0 < \theta < 180$.	[4]
	•••••	•••••	•••••		•••••
		••••••	•		
			•••••		
	•••••	•••••	•••••		•••••
		••••••	•		
		•••••	•••••		
		••••••	•		
			••••		
			•••••		
	•••••	•••••	•••••		•••••
		•••••	•		
			•••••		•••••
		•••••	•••••		•••••
		••••••	•••••		••••••

Given that the progression is geometric, find the sum to infinity.

It is now given instead that the progression is arithmetic.

Find the	common di	incrence of t				
						•••••
•••••	••••••	•••••••••••	••••••		••••••••••	•••••
						•••••
•••••						
Find the	sum of the	first 16 term	as when $\theta =$	$\frac{1}{3}\pi$.		
Find the	sum of the	first 16 term	as when $\theta =$	$\frac{1}{3}\pi$.		
Find the	sum of the	first 16 term	as when $\theta =$	$\frac{1}{3}\pi$.		
Find the	sum of the	first 16 term	as when $\theta =$	$\frac{1}{3}\pi$.		
Find the	sum of the	first 16 term	as when $\theta =$	$\frac{1}{3}\pi$.		
Find the	sum of the	first 16 term	as when $\theta =$	$\frac{1}{3}\pi$.		
Find the	sum of the	first 16 term	as when $\theta =$	$\frac{1}{3}\pi$.		

9 The functions f and	g are defined by
------------------------------	------------------

$$f(x) = x^2 - 4x + 3 \quad \text{for } x > c, \text{ where } c \text{ is a constant,}$$
$$g(x) = \frac{1}{x+1} \quad \text{for } x > -1.$$

(a)	Express $f(x)$ in the form $(x-a)^2 + b$.	[2]				
It is given that f is a one-one function.						
(b)	State the smallest possible value of c .	[1]				

It is now given that c = 5.

	$f^{-1}(x)$ and state the domain of f^{-1} .	
Find an expression for	gf(x) and state the range of gf .	
Find an expression for	gf(x) and state the range of gf .	
Find an expression for		

10 (a)	The coordinates of two points A and B are $(-7, 3)$ and $(5, 11)$ respectively.			
	Show that the equation of the perpendicular bisector of AB is $3x + 2y = 11$.	[4]		
		•••••		
		•••••		
		,		
		•••••		
		••••••		
		•••••		

E	Find an equation of the circle.	
		•••••
_		
•		
		•••••
•		
•		•••••
•		
•		•••••
•		••••••
•		
•		••••••
•		
_		
•		
•		•••••
•		••••••
•		

The diagram shows part of the curve with equation $y = x^3 - 2bx^2 + b^2x$ and the line OA, where A is the maximum point on the curve. The x-coordinate of A is a and the curve has a minimum point at (b, 0), where a and b are positive constants.

(a)	Show that $b = 3a$.	[4]
		•••••
		•••••
		•••••

© UCLES 2020 9709/13/M/J/20

•••••		•••••							
••••••	•••••	••••••			•••••	• • • • • • • • • • • • • • • • • • • •			••••••
•••••		•••••			•••••		•••••		•••••
•••••		•••••							
••••••	••••••	••••••	••••••	•••••••	••••••		••••••	•••••••	••••••
		•••••							
•••••	•••••	••••••			••••••		•••••		•••••
•••••		•••••							•••••
•••••									
••••••	••••••	••••••	••••••	•••••••	••••••		••••••	•••••••	•••••
••••••	•••••	•••••	•••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	••••••	••••••
•••••	•••••	•••••			•••••		• • • • • • • • • • • • • • • • • • • •		•••••
•••••					•••••				•••••

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/11

Paper 1 Pure Mathematics 1

October/November 2020

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

$y = 2x^2 + 5$ do not meet.	

Find the equation	of the curve				
Find the equation	of the curve.				
					•••••
•••••	••••••	••••••	•••••	•••••	
					•••••
			••••••		
	•••••	•••••	•••••	•••••	
•••••	•••••	•••••	•••••	•••••	
••••••	•••••••••••	•••••	•••••••	•••••	•••••
			•		
	•••••		•••••		

Find the	rate at wh	ich the rad	ius of the	balloon i	s increas	ing when	the radius i	s 10 cm.	
••••••	•••••	•••••	••••••	•••••	••••••	••••••			•••••
••••••	••••••	••••••	••••••	•••••	•••••	•••••			••••••
•••••		••••••	•••••						•••••
		••••••							
•••••									
									••••
••••••	•••••••	•••••••••	••••••	•	••••••	•••••			••••••
•••••	••••••	•••••••	•••••	•••••	•••••	•••••	••••••	, 	••••••
•••••		••••••	•••••	•••••	•••••	•••••			•••••
•••••	•••••	••••••	•••••		•••••	•••••			
		•••••			•••••				
••••••	••••••	••••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••			••••••

In the diagram, the lower curve has equation $y = \cos \theta$. The upper curve shows the result of applying a combination of transformations to $y = \cos \theta$.

Find, in terms of a cosine function, the equation of the upper curve.	[3]

a)	Find the value of the non-zero constant <i>a</i> .	
		••••••••••
		•••••••
		•••••
		••••••••••
L	Find the coefficient of 6 in the converge of $(1, 3)(2, 2, a)^6$	
D)	Find the coefficient of x^6 in the expansion of $(1-x^3)\left(2x^2 + \frac{a}{x}\right)^6$.	
		•••••

6	The equation of a curve is $y = 2 + \sqrt{25 - x^2}$.								
	Find the coordinates of the point on the curve at which the gradient is $\frac{4}{3}$.	[5]							
		••••••							
		•••••							
		••••••							
		• • • • • • •							
		•••••							
		••••••							
		•••••							
		•••••							
		••••••							

7 (a	Show that $\frac{\sin \theta}{1 - \sin \theta} - \frac{\sin \theta}{1 + \sin \theta} = 2 \tan^2 \theta$.	[3]

)	Hence solve the equation	$\frac{\sin\theta}{1-\sin\theta} -$	$\frac{\sin\theta}{1+\sin\theta} =$	$= 8$, for $0^{\circ} < \theta < 180^{\circ}$.	[3]

Show that $r = 2R - 1$.	
	,
	•

It is now given that the 3rd term of the first progression is equal to the 2nd term of the second progression.

]	Express S in terms of a .	[4]
,		
		• • • • • • • • • • • • • • • • • • • •
•		
		•
		••••••••••
		•••••••••••
•		•
		•••••••••••

The diagram shows a circle with centre A passing through the point B. A second circle has centre B and passes through A. The tangent at B to the first circle intersects the second circle at C and D.

The coordinates of A are (-1, 4) and the coordinates of B are (3, 2).

(a)	Find the equation of the tangent <i>CBD</i> .	[2]
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••

		•••••		• • • • • • • • • • • • • • • • • • • •	••••••	••••••	•••••	••••••
	•••••	•••••	•	• • • • • • • • • • • • • • • • • • • •	••••••	• • • • • • • • • • • • • • • • • • • •	••••••	••••••
	•••••	•••••				•••••		
		•••••						
		•••••						
						••••••		••••••
Find, by ca	ılculation,	, the <i>x</i> -co	oordinates	s of C and	 D.			
Find, by ca	ulculation,	, the <i>x</i> -co	oordinates	s of C and	D.			
Find, by ca	ulculation,	, the <i>x</i> -co	oordinates	s of C and	D.			
Find, by ca	ulculation,	, the <i>x</i> -co	oordinates	s of C and	D.			
Find, by ca	alculation,	, the <i>x</i> -co	oordinates	s of C and	D.			
Find, by ca	alculation,	, the <i>x</i> -co	oordinates	s of C and	D.			
Find, by ca	alculation,	, the <i>x</i> -co	oordinates	s of C and	D.			
Find, by ca	alculation,	, the <i>x</i> -co	pordinates	s of C and	D.			
Find, by ca	ulculation,	, the x-co	pordinates	s of C and	D.			
Find, by ca	alculation,	, the x-co	pordinates	s of C and	D.			
Find, by ca	alculation,	, the <i>x</i> -co	pordinates	s of C and	D.			
Find, by ca	alculation,	, the <i>x</i> -co	pordinates	s of C and	D.			
Find, by ca	alculation,	, the x-co	pordinates	s of C and	D.			

(a)

The diagram shows a sector CAB which is part of a circle with centre C. A circle with centre O and radius r lies within the sector and touches it at D, E and F, where COD is a straight line and angle ACD is θ radians.

Find CD in terms of r and $\sin \theta$.	[3]

It is now given that r = 4 and $\theta = \frac{1}{6}\pi$.

Find the perimeter of sector <i>CAB</i>	β in terms of π .	
		•••••
Find the area of the shaded region	on in terms of π and $\sqrt{3}$.	
Find the area of the shaded region	on in terms of π and $\sqrt{3}$.	
Find the area of the shaded region	on in terms of π and $\sqrt{3}$.	
Find the area of the shaded region	on in terms of π and $\sqrt{3}$.	
Find the area of the shaded region	on in terms of π and $\sqrt{3}$.	
Find the area of the shaded region	on in terms of π and $\sqrt{3}$.	
Find the area of the shaded region	on in terms of π and $\sqrt{3}$.	
Find the area of the shaded region	on in terms of π and $\sqrt{3}$.	
Find the area of the shaded region	on in terms of π and $\sqrt{3}$.	
Find the area of the shaded region	on in terms of π and $\sqrt{3}$.	
Find the area of the shaded region	on in terms of π and $\sqrt{3}$.	
Find the area of the shaded region	on in terms of π and $\sqrt{3}$.	
Find the area of the shaded region	on in terms of π and $\sqrt{3}$.	

11	The functions	f and	g are	defined	by

$$f(x) = x^2 + 3$$
 for $x > 0$,
 $g(x) = 2x + 1$ for $x > -\frac{1}{2}$.

(a)	Find an expression for $fg(x)$.	[1]
(b)	Find an expression for $(fg)^{-1}(x)$ and state the domain of $(fg)^{-1}$.	[4]
		••••••

•	
•	•••••
•	•••••
•	•••••
•	 •••••
•	 •••••
•	•••••
•	•••••
	•••••
•	
•	•••••

The diagram shows a curve with equation $y = 4x^{\frac{1}{2}} - 2x$ for $x \ge 0$, and a straight line with equation y = 3 - x. The curve crosses the *x*-axis at A(4, 0) and crosses the straight line at B and C.

(a)	Find, by calculation, the x -coordinates of B and C .	[4]
(b)	Show that B is a stationary point on the curve.	[2]
		······

••	
••	
	,
••	
••	
••	,
••	
••	
••	
••	• • • • • • • • • • • • • • • • • • • •
••	
••	
••	

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/12

Paper 1 Pure Mathematics 1

October/November 2020

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

BLANK PAGE

-	The coefficient of x^3 in the expansion of $(1 + kx)(1 - 2x)^5$ is 20.	
	Find the value of the constant k .	[4]
		······
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••

Find the sum to	infinity of the p	rogression				[5
rind the sum to	minity of the p	nogression.				[J
		•••••			•••••	
					•••••	
					•••••	
•••••	•••••					
•••••	•••••	•••••	•••••	••••••	•••••	•••••
•••••				••••••	•••••	
					••••	
•••••••••••	•••••	•••••	•		••••••	•••••
•••••	•••••	••••••	•••••	••••••	•••••	•••••
				••••••	•••••	

y = 6x + 4.							
Show that, for all values	s of m , the line intersects the curve at two distinct poin	ts.					
		•••••					
		••••••					

The sum, S_n , of the first n terms of an arithmetic progression is given by

4

e kth term in the progression is greater than 200. Ind the smallest possible value of k. [
nd the smallest possible value of k.

5 Functions f and g are defined by

$$f(x) = 4x - 2$$
, for $x \in \mathbb{R}$,
 $g(x) = \frac{4}{x+1}$, for $x \in \mathbb{R}$, $x \neq -1$.

(a)	Find the value of $fg(7)$.	[1]
(b)	Find the values of x for which $f^{-1}(x) = g^{-1}(x)$.	[5]

6	(a)	Prove the identity $\left(\frac{1}{\cos x} - \tan x\right) \left(\frac{1}{\sin x} + 1\right) \equiv \frac{1}{\tan x}$.	[4]
	(b)	Hence solve the equation $\left(\frac{1}{\cos x} - \tan x\right) \left(\frac{1}{\sin x} + 1\right) = 2\tan^2 x$ for $0^\circ \le x \le 180^\circ$.	[2]

()	A point moves along the curve in such a way that the <i>x</i> -coordinate is increasing at a consof 0.12 units per second.	stant rate
	Find the rate of increase of the <i>y</i> -coordinate when $x = 4$.	[3]
		••••••
		•••••
		•••••
		•••••
(b)	Find the equation of the curve.	[4]
		••••••
		•••••

In the diagram, ABC is an isosceles triangle with AB = BC = r cm and angle $BAC = \theta$ radians. The point D lies on AC and ABD is a sector of a circle with centre A.

(a)	Express the area of the shaded region in terms of r and θ .	[3]

							•••••					•••••
					••••••		•••••			•••••		•••••
•••••	•••••	•••••	• • • • • • • • • •									
				••••••	••••••	••••••	••••••	•••••	••••••	••••••	•••••	•••••
•••••	•••••	•••••		•••••	•••••		•••••	•••••		•••••		•••••
	•••••			•••••								
•••••	•••••	•••••	••••••	•••••	••••••	••••••	••••••	•••••	••••••	••••••	•••••	•••••
•••••	•••••	•••••	••••••	•••••	••••••	•••••	•••••	•••••	••••••	••••••	•••••	•••••
			••••••		•••••		•••••					
					••••							

)	Find the equation of the circle.	[3]
		•••••
		•••••
	Int C is such that AC is a diameter of the circle. Point D has coordinates (5, 16). Show that DC is a tangent to the circle.	[4]
	Show that DC is a tangent to the circle.	
	Show that DC is a tangent to the circle.	
	Show that DC is a tangent to the circle.	
	Show that DC is a tangent to the circle.	
	Show that DC is a tangent to the circle.	
	Show that DC is a tangent to the circle.	
	Show that DC is a tangent to the circle.	
	Show that DC is a tangent to the circle.	
	Show that DC is a tangent to the circle.	

The other tangent from D to the circle touches the circle at E.

Find the coordinates of E .	[2]
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••

The diagram shows part of the curve $y = \frac{2}{(3-2x)^2} - x$ and its minimum point M, which lies on the x-axis.

(a)	Find expressions for $\frac{dy}{dx}$, $\frac{d^2y}{dx^2}$ and $\int y dx$. [6]

•••••	••••••					••••••	
•••••		•••••					
••••••	••••••	•••••	•••••	•••••••	••••••	••••••	••••••
•••••	•••••	•••••	•••••				
•••••	••••••	•••••	•••••	••••••	••••••	••••••	••••••
	•••••						
Find the	area of the	shaded re	egion bound	ded by the c	urve and the	coordinate a	uxes.
Find the	area of the	shaded re	gion bound	ded by the c	urve and the	coordinate a	ixes.
Find the	area of the	shaded re	gion bound	ded by the c	urve and the	coordinate a	uxes.
Find the	area of the	shaded re	gion bound	led by the c	urve and the	coordinate a	ixes.
Find the	area of the	shaded re	gion bound	ded by the c	urve and the	coordinate a	ixes.
Find the	area of the	shaded re	gion bound	ded by the c	urve and the	coordinate a	ixes.
Find the	area of the	shaded re	gion bound	ded by the c	urve and the	coordinate a	uxes.
Find the	area of the	shaded re	gion bound	ded by the c	urve and the	coordinate a	ixes.
Find the	area of the	shaded re	gion bound	ded by the c	urve and the	coordinate a	ixes.
Find the	area of the	shaded re	gion bound	ded by the c	urve and the	coordinate a	ixes.
Find the	area of the	shaded re	gion bound	ded by the c	urve and the	coordinate a	ixes.
Find the	area of the	shaded re	gion bound	ded by the c	urve and the	coordinate a	ixes.
Find the	area of the	shaded re	gion bound	ded by the c	urve and the	coordinate a	ixes.

				10		
11	A cı	ırve has equat	$x = 3\cos 2x + 2 $ for	$0 \le x \le \pi$.		
	(a)	State the great	atest and least values o	f y.		[2]
	(b)	Sketch the gr	raph of y = 3 cos 2x + 2	for $0 \le x \le \pi$.		[2]
	(c)		ng the straight line $y = \cos 2x + 2 = kx$ for $0 \le x$			ons of the
		(i) $k = -3$			C	[1]
		(ii) $k = 1$				[1]
		(iii) $k = 3$				[1]
		() E				r.+1

© UCLES 2020 9709/12/O/N/20

Functions f, g and h are defined for $x \in \mathbb{R}$ by

$$f(x) = 3\cos 2x + 2,$$

$$g(x) = f(2x) + 4,$$

$$h(x) = 2f\left(x + \frac{1}{2}\pi\right).$$

(d)	Describe fully a sequence of transformations that maps the graph of $y = f(x)$ on to $y = g(x)$. [2]
(e)	Describe fully a sequence of transformations that maps the graph of $y = f(x)$ on to $y = h(x)$. [2]

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/13

Paper 1 Pure Mathematics 1

October/November 2020

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

(a)	Express $x^2 + 6x + 5$ in the form $(x + a)^2 + b$, where a and b are constants.	
		•••••
		••••••
(b)	The curve with equation $y = x^2$ is transformed to the curve with equation $y = x^2$	+ 6 <i>x</i> + 5.
(b)		+ 6 <i>x</i> + 5.
(b)	The curve with equation $y = x^2$ is transformed to the curve with equation $y = x^2$. Describe fully the transformation(s) involved.	+ 6 <i>x</i> + 5.
(b)		+ 6 <i>x</i> + 5.
(b)		+ 6 <i>x</i> + 5.
(b)		+ 6x + 5.
(b)		+ 6x + 5.
(b)		+ 6x + 5.
(b)		+ 6x + 5.
(b)		+ 6x + 5.
(b)		+ 6x + 5.
(b)		+ 6x + 5.
(b)		+ 6x + 5.

© UCLES 2020

The	function f is defined by $f(x) = \frac{2}{(x+2)^2}$ for $x > -2$.
(a)	Find $\int_{1}^{\infty} f(x) dx$. [3]
(b)	The equation of a curve is such that $\frac{dy}{dx} = f(x)$. It is given that the point $(-1, -1)$ lies on the curve.
	Find the equation of the curve. [2]

Solve the equation $3 \tan^2 \theta + 1 =$	$\tan^2\theta$	[5]

A curve has equation $y = 3x^2 - 4x + 4$ and a straight line has equation $y = mx + m - 1$, where m is a constant.
Find the set of values of m for which the curve and the line have two distinct points of intersection. [5]

In the expansion of $(a + bx)^7$, where a and b are non-zero constants, the coefficients of x, x^2 and x^4

Find the value of	$f(\frac{a}{b})$.		[5
	•••••	 	
	•••••	 	
	•••••	 	

© UCLES 2020 9709/13/O/N/20

The	function f is defined by $f(x) = \frac{2x}{3x - 1}$ for $x > \frac{1}{3}$.	
(a)	Find an expression for $f^{-1}(x)$.	
		•••••
		•••••
(b)	Show that $\frac{2}{3} + \frac{2}{3(3x-1)}$ can be expressed as $\frac{2x}{3x-1}$.	
(b)		
(b)		
(b)		
(b)		
(b)	Show that $\frac{2}{3} + \frac{2}{3(3x-1)}$ can be expressed as $\frac{2x}{3x-1}$.	
	Show that $\frac{2}{3} + \frac{2}{3(3x-1)}$ can be expressed as $\frac{2x}{3x-1}$.	

The first and second terms of an arithmetic progression are $\frac{1}{\cos^2 \theta}$ and $-\frac{\tan^2 \theta}{\cos^2 \theta}$, respectively, where

ο.	a . 1	COS O	COS O	
	$\theta < \frac{1}{2}\pi$.			
(a)	Show that the common difference is $-\frac{1}{\cos^4 \theta}$.		I	[4]
		•••••		••••
		•••••		••••
		•••••		••••
				••••
				••••
				••••
				••••
				••••
				••••
				••••
		•••••		••••
				••••
				••••

F	Find the exact value of the 13th term when $\theta = \frac{1}{6}\pi$.	[3]
		•••••
		•••••
		•••••
••		•••••
••		•••••
••		•••••
		•••••
••		•••••
••		•••••
••		•••••
••		•••••
••		•••••
••		••••••
••		•••••
••		••••••
••		••••••
••		••••••
••		••••••
••		••••••
••		••••••
••		••••••
••		••••••

8	The equation of a curve is $y = 2x + 1$	$1 + \frac{1}{2x+1}$	for $x > -\frac{1}{2}$.
---	---	----------------------	--------------------------

	and $\frac{d^2y}{dx^2}$.						
			••••••		•••••		••••••
		•••••••••••••••••••••••••••••••••••••••	•••••		•••••	••••••	••••••
		•••••••	•••••		•••••	••••••	•••••
			•••••			••••••	••••••
•••••		•••••••••	••••••		•••••	••••••	•••••
			•••••			••••••	
			•••••		•••••		•••••
		••••••••••					••••••
		••••••	•••••	•••••	•••••	••••••	••••••
		•••••	•••••		•••••	•••••	•••••
					•••••		•••••

	Find the coordinates of the stationary point and determine the nature of the stationary point. [5
•	
•	
•	

(a)

In the diagram, arc AB is part of a circle with centre O and radius 8 cm. Arc BC is part of a circle with centre A and radius 12 cm, where AOC is a straight line.

Find angle <i>BAO</i> in radians.	[2]

© UCLES 2020 9709/13/O/N/20

(b)	Find the area of the shaded region.	[4]
		•••••
		•••••
		•••••
		•••••
· \		
(c)	Find the perimeter of the shaded region.	[3]
(c)	Find the perimeter of the shaded region.	[3]
(c)	Find the perimeter of the shaded region.	[3]
(c)	Find the perimeter of the shaded region.	[3]
c)	Find the perimeter of the shaded region.	
(c)		

10	A curve has equation $y = \frac{1}{k}x^{\frac{1}{2}} + x^{-\frac{1}{2}} + \frac{1}{k^2}$ where $x > 0$ and k is a positive constant.
	(a) It is given that when $x = \frac{1}{4}$, the gradient of the curve is 3.

It is given that when $x = \frac{1}{4}$, the gradient of the curve is 3.					
Find the value of k .	[4]				

(b)	It is given instead that $\int_{\frac{1}{4}k^2}^{k^2} \left(\frac{1}{k} x^{\frac{1}{2}} + x^{-\frac{1}{2}} + \frac{1}{k^2} \right) dx = \frac{13}{12}.$
	Find the value of k . [5]

(a)		
	Show that the point $T(-6, 6)$ is outside the circle.	[3
Two	σ tangents from T to the circle are drawn.	
	Show that the angle between one of the tangents and CT is exactly 45° .	[2
	Show that the angle between one of the tangents and CT is exactly 45°.	[2
	Show that the angle between one of the tangents and CT is exactly 45° .	[2
	Show that the angle between one of the tangents and CT is exactly 45°.	

© UCLES 2020 9709/13/O/N/20

The two tangents touch the circle at A and B.

e)	Find the equation of the line AB, giving your answer in the form $y = mx + c$.	[4]
		•••••
		•••••
		•••••
l)	Find the x -coordinates of A and B .	[3]
l)	Find the <i>x</i> -coordinates of <i>A</i> and <i>B</i> .	[3]
l)	Find the <i>x</i> -coordinates of <i>A</i> and <i>B</i> .	
l)		
1)		
1)		
1)		
1)		
1)		
1)		
1)		

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/12

Paper 1 Pure Mathematics 1

February/March 2021

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

BLANK PAGE

1	(a)	Find the first three terms in the expansion, in ascending powers of x , of $(1 + x)^5$.	[1]
			•••••
			•••••
	(b)	Find the first three terms in the expansion, in ascending powers of x , of $(1-2x)^6$.	[2]
	(c)	Hence find the coefficient of x^2 in the expansion of $(1+x)^5(1-2x)^6$.	[2]
			•••••
			•••••

$(2x-3)^2$	$-\frac{4}{(2x-3)^2}$	-3=0.		[4
			•••••	
 •••••	•••••		•••••	 •••••
 ••••••	•••••		•••••	
•••••••	•••••		••••••	
 				 •••••
			•••••	 •••••

Solve the equation $\frac{\tan \theta + 2 \sin \theta}{\tan \theta - 2 \sin \theta} = 3$ for $0^{\circ} < \theta < 180^{\circ}$	[4]

	•••••														
••••			••••••	•••••		•••••	•••••		•••••					•••••	•••••
	••••••	•••••	•••••	•••••	•••••	•••••	•••••		•••••	•••••			•••••	•••••	•••••
	•••••	•••••	••••••	•••••	• • • • • • • •	••••••	•••••	••••••	•••••	•••••	•••••	•••••	••••••	•••••	•••••
••••	•••••	•••••			•••••	•••••	•••••			•••••			••••••	•••••	
	•••••	••••••	•••••		•••••	•••••	•••••		•••••	•••••	•••••		•••••	•••••	•••••
••••			•••••		•••••	•••••	•••••							•••••	
						•••••	•••••							•••••	
••••															
••••	•••••	••••••	••••••	•••••	•	••••••	•••••	•	•••••	•••••	••••••	•	•	•••••	••••••
••••	•••••	•••••	• • • • • • • • •	•••••	• • • • • • • • •	• • • • • • • • •	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	••••••
••••	••••••	••••••	••••••	••••••	• • • • • • • •	••••••	•••••	••••••	•••••	•••••	••••••	•••••	••••••	•••••	•••••
••••	•••••	•••••	••••••	•••••	• • • • • • • •	•••••	•••••	••••••	•••••	•••••	•••••	•••••	••••••	•••••	•••••
••••	••••••	••••••	•••••	•••••	•••••	•••••	•••••		•••••	•••••			••••••	•••••	•••••
••••	•••••	••••••	•••••		•••••	•••••	•••••		•••••	•••••			•••••	•••••	•••••
••••					•••••		•••••	•••••		•••••			•••••	•••••	
••••		••••••			•••••		•••••							•••••	•••••
· • • •															

In the diagram, the graph of y = f(x) is shown with solid lines. The graph shown with broken lines is a transformation of y = f(x).

(a)	Describe fully the two single transformations of $y = f(x)$ that have been combined to give the resulting transformation. [4]
(b)	State in terms of y , f and x , the equation of the graph shown with broken lines. [2]

Find the rate	of increase at A	of the <i>x</i> -coord	dinate of the p	oint.	
•••••		••••••	••••••	•••••	
		•••••		•••••	•••••

•	
•	• • • • • • • • • • • • • • • • • • • •
•	
•	
•	
•	
•	• • • • • • • • • • • • • • • • • • • •
•	• • • • • • • • • • • • • • • • • • • •
•	
•	
•	

f:
$$x \mapsto x^2 + 2x + 3$$
 for $x \le -1$,
g: $x \mapsto 2x + 1$ for $x \ge -1$.

(a)	Express $f(x)$ in the form $(x + a)^2 + b$ and state the range of f.	[3]
		••••••
		••••••
		••••••
		••••••
		••••
		••••••
		•••••••••••••••••••••••••••••••••••••••

••••••	•••••	••••••	••••••	•••••	••••••	•••••	••••••	•••••
•••••	•••••		•••••	••••••		•••••	•••••	
•••••								
					•			
•••••••••••	•••••	••••••	•••••	•••••	••••••	•••••	••••••	•••••
•••••	•••••		••••••	•••••	••••••	••••••	••••••	
			•••••			••••••		
Solve the ec	uation gf(x = 13.						
Solve the eq	uation gf(x) = 13.						
Solve the eq	uation gf(x) = 13.						
Solve the ec	uation gf(x) = 13.						
Solve the eq	uation gf(x) = 13.						
Solve the ec								

Find an equation of the circle.	

		•••••
(b)	Find an equation of the tangent to the circle at <i>B</i> .	[2]

For	the case where the progression is geometric, the sum to infinity is $\frac{1}{\cos \theta}$.
(i)	Show that the second term is $\cos \theta \sin^2 \theta$.
(ii)	Find the sum of the first 12 terms when $\theta = \frac{1}{2}\pi$, giving your answer correct to 4 signature.
(ii)	
(ii)	Find the sum of the first 12 terms when $\theta = \frac{1}{3}\pi$, giving your answer correct to 4 sig figures.
(ii)	Find the sum of the first 12 terms when $\theta = \frac{1}{3}\pi$, giving your answer correct to 4 signature.
(ii)	Find the sum of the first 12 terms when $\theta = \frac{1}{3}\pi$, giving your answer correct to 4 sig figures.
(ii)	Find the sum of the first 12 terms when $\theta = \frac{1}{3}\pi$, giving your answer correct to 4 signifigures.
(ii)	Find the sum of the first 12 terms when $\theta = \frac{1}{3}\pi$, giving your answer correct to 4 signifigures.
(ii)	Find the sum of the first 12 terms when $\theta = \frac{1}{3}\pi$, giving your answer correct to 4 signifigures.
(ii)	Find the sum of the first 12 terms when $\theta = \frac{1}{3}\pi$, giving your answer correct to 4 sig figures.
(ii)	Find the sum of the first 12 terms when $\theta = \frac{1}{3}\pi$, giving your answer correct to 4 signifigures.

Find the 85th term when $\theta = \frac{1}{3}\pi$.	

The diagram shows a sector ABC which is part of a circle of radius a. The points D and E lie on AB and AC respectively and are such that AD = AE = ka, where k < 1. The line DE divides the sector into two regions which are equal in area.

(a)	For the case where angle $BAC = \frac{1}{6}\pi$ radians, find k correct to 4 significant figures. [5]

(b)	For the general case in which angle $BAC = \theta$ radians, where $0 < \theta < \frac{1}{2}\pi$, it is given that $\frac{\theta}{\sin \theta}$, > 1
	Find the set of possible values of k .	[3]
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		••••

The diagram shows the curve with equation $y = 9(x^{-\frac{1}{2}} - 4x^{-\frac{3}{2}})$. The curve crosses the *x*-axis at the point *A*.

(a)	Find the x -coordinate of A .	[2]
(b)	Find the equation of the tangent to the curve at A .	[4]

© UCLES 2021 9709/12/F/M/21

(C)	Find the <i>x</i> -coordinate of the maximum point of the curve.	[2]
(d)	Find the area of the region bounded by the curve, the <i>x</i> -axis and the line $x = 9$.	[4]
		•••••
		•••••
		•••••
		•••••

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/11

Paper 1 Pure Mathematics 1

May/June 2021

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

	4).										
Fine	d the equ	ation of	the curve	e.							
•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	••••••	••••••	•••••
•••••		•••••		•••••	••••••	•••••		•••••	•••••		••••••
		•••••									
•••••				•••••	•••••	•••••					
•••••	•	••••••	•••••••	••••••	••••••	••••••	•	••••••	••••••		•••••
•••••		•••••		•••••	•••••	•••••		•••••			•••••
•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	•••••	••••••	••••••	••••••	·····	••••••
		•••••		•••••		•••••		•••••	•••••		•••••
•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	••••••	•••••	••••••	••••••	••••••	••••••	•••••
											•••••
•••••		•••••		•••••	••••••	•••••		•••••	•••••		•••••
						•••••					

Find the 60th term of the progression. [5]						
and the ooth term of	tile progression	•				
	•••••					
	•••••	•••••				
		•••••				
	•••••	•••••				
•••••	•••••	••••••••••	•			
	••••••	••••••	••••••••••••	•••••		
	••••••	••••••	••••••••••••	•••••		

)	Find the first three terms in the expansion of $(3-2x)^5$ in ascending powers of x.	[3]
	Hence find the coefficient of x^2 in the expansion of $(4+x)^2(3-2x)^5$.	[3]
)	Hence find the coefficient of x^2 in the expansion of $(4+x)^2(3-2x)^5$.	[3]
•	Hence find the coefficient of x^2 in the expansion of $(4+x)^2(3-2x)^5$.	[3]
•	Hence find the coefficient of x^2 in the expansion of $(4+x)^2(3-2x)^5$.	[3]
	Hence find the coefficient of x^2 in the expansion of $(4+x)^2(3-2x)^5$.	[3]
	Hence find the coefficient of x^2 in the expansion of $(4+x)^2(3-2x)^5$.	
)		
)		

The diagram shows part of the graph of $y = a \tan(x - b) + c$.

Given that $0 < b < \pi$, state the values of the constants a , b and c .	[3]

Given that k is negative, find the sum to infinity of the progression.	[4]

	Find the value of <i>k</i>

7 (a)	Prove the identity $\frac{1 - 2\sin^2\theta}{1 - \sin^2\theta} = 1 - \tan^2\theta$.	[2]
	$1 - \sin^2 \theta$	

Hence solve the equat	$1 - \sin^2 \theta$			
•••••		•••••••••••	••••••	••••••
		•••••	•••••	•••••
	••••••		••••••	
		•••••	•••••	•••••
		•••••	•••••	
		•••••		
		••••••	••••••	••••••
		•••••	•••••	

The diagram shows a symmetrical metal plate. The plate is made by removing two identical pieces from a circular disc with centre C. The boundary of the plate consists of two arcs PS and QR of the original circle and two semicircles with PQ and RS as diameters. The radius of the circle with centre C is 4 cm, and PQ = RS = 4 cm also.

(a)	Show that angle $PCS = \frac{2}{3}\pi$ radians.	[2]
		••••••
(b)	Find the exact perimeter of the plate.	[3]
		••••••
		••••••

9 Functions f and g are defined as follows:

$$f(x) = (x-2)^2 - 4 \text{ for } x \ge 2,$$

 $g(x) = ax + 2 \text{ for } x \in \mathbb{R},$

where a is a constant.

(a)	State the range of f.	[1]
(b)	Find $f^{-1}(x)$.	[2]
(c)	Given that $a = -\frac{5}{3}$, solve the equation $f(x) = g(x)$.	[3]

(d)	Given instead that $ggf^{-1}(12) = 62$, find the possible values of a .	[5]

(a)	Find the x -coordinates of the points A and B where the circle intersects the x -axis.	
		••••
		· · · · ·
		••••
		••••
		••••
		••••
		••••
(b)	Find the point of intersection of the tangents to the circle at A and B .	
(b)	Find the point of intersection of the tangents to the circle at <i>A</i> and <i>B</i> .	
(b)	Find the point of intersection of the tangents to the circle at A and B .	
(b)	Find the point of intersection of the tangents to the circle at <i>A</i> and <i>B</i> .	
(b)	Find the point of intersection of the tangents to the circle at <i>A</i> and <i>B</i> .	
(b)		

		16
11	The	equation of a curve is $y = 2\sqrt{3x+4} - x$.
	(a)	Find the equation of the normal to the curve at the point $(4, 4)$, giving your answer in the form $y = mx + c$. [5]
	(b)	Find the coordinates of the stationary point. [3]

(c)	Determine the nature of the stationary point.	[2]
		•••••
(d)	Find the exact area of the region bounded by the curve, the x-axis and the lines $x = 0$ and $x = 0$: 4. [4]
		•••••
		•••••
		••••
		••••
		•••••
		••••
		••••

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/11

Paper 1 Pure Mathematics 1

May/June 2021

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

	4).										
Fine	d the equ	ation of	the curve	e.							
•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	••••••	••••••	•••••
•••••		•••••		•••••	••••••	•••••		•••••	•••••		••••••
•••••				•••••	•••••	•••••					
•••••	•	••••••	•••••••	••••••	••••••	••••••	•	••••••	••••••		•••••
•••••		•••••		•••••	•••••	•••••		•••••			•••••
•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	•••••	••••••	••••••	••••••	·····	••••••
		•••••		•••••		•••••		•••••	•••••		••••••
•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	••••••	•••••	••••••	••••••	••••••	••••••	•••••
											•••••
•••••		•••••		•••••	••••••	•••••		•••••	•••••		•••••
						•••••					

Find the 60th term of	f the progression	l_			
and the ooth term of	tile progression	•			
	•••••				
	•••••	•••••			
		•••••			
	•••••	•••••			
•••••	•••••	••••••••••	•		
	••••••	••••••	••••••••••••	•••••	
	••••••	••••••	••••••••••••	•••••	

)	Find the first three terms in the expansion of $(3-2x)^5$ in ascending powers of x.	[3]
	Hence find the coefficient of x^2 in the expansion of $(4+x)^2(3-2x)^5$.	[3]
)	Hence find the coefficient of x^2 in the expansion of $(4+x)^2(3-2x)^5$.	[3]
•	Hence find the coefficient of x^2 in the expansion of $(4+x)^2(3-2x)^5$.	[3]
•	Hence find the coefficient of x^2 in the expansion of $(4+x)^2(3-2x)^5$.	[3]
	Hence find the coefficient of x^2 in the expansion of $(4+x)^2(3-2x)^5$.	[3]
	Hence find the coefficient of x^2 in the expansion of $(4+x)^2(3-2x)^5$.	
)		
)		

The diagram shows part of the graph of $y = a \tan(x - b) + c$.

Given that $0 < b < \pi$, state the values of the constants a , b and c .	[3]

Given that k is negative, find the sum to infinity of the progression.	[4]

	Find the value of <i>k</i>

7 (a)	Prove the identity $\frac{1 - 2\sin^2\theta}{1 - \sin^2\theta} = 1 - \tan^2\theta$.	[2]
	$1 - \sin^2 \theta$	

Hence solve the equat	$1 - \sin^2 \theta$, , , , , ,	
•••••		•••••••••••	••••••	••••••
		•••••	•••••	•••••
	••••••		••••••	
		•••••	•••••	•••••
		•••••	•••••	
		•••••		
		••••••	••••••	••••••
		•••••	•••••	

The diagram shows a symmetrical metal plate. The plate is made by removing two identical pieces from a circular disc with centre C. The boundary of the plate consists of two arcs PS and QR of the original circle and two semicircles with PQ and RS as diameters. The radius of the circle with centre C is 4 cm, and PQ = RS = 4 cm also.

(a)	Show that angle $PCS = \frac{2}{3}\pi$ radians.	[2]
		••••••
(b)	Find the exact perimeter of the plate.	[3]
		••••••
		••••••

9 Functions f and g are defined as follows:

$$f(x) = (x-2)^2 - 4 \text{ for } x \ge 2,$$

 $g(x) = ax + 2 \text{ for } x \in \mathbb{R},$

where a is a constant.

(a)	State the range of f.	[1]
(b)	Find $f^{-1}(x)$.	[2]
(c)	Given that $a = -\frac{5}{3}$, solve the equation $f(x) = g(x)$.	[3]

(d)	Given instead that $ggf^{-1}(12) = 62$, find the possible values of a .	[5]

(a)	Find the x -coordinates of the points A and B where the circle intersects the x -axis.	
		••••
		· · · · ·
		••••
		••••
		••••
		••••
		••••
(b)	Find the point of intersection of the tangents to the circle at A and B .	
(b)	Find the point of intersection of the tangents to the circle at <i>A</i> and <i>B</i> .	
(b)	Find the point of intersection of the tangents to the circle at A and B .	
(b)	Find the point of intersection of the tangents to the circle at <i>A</i> and <i>B</i> .	
(b)	Find the point of intersection of the tangents to the circle at <i>A</i> and <i>B</i> .	
(b)		

16			
11	The	equation of a curve is $y = 2\sqrt{3x+4} - x$.	
	(a)	Find the equation of the normal to the curve at the point $(4, 4)$, giving your answer in the form $y = mx + c$. [5]	
	(b)	Find the coordinates of the stationary point. [3]	

(c)	Determine the nature of the stationary point.	[2]
		•••••
(d)	Find the exact area of the region bounded by the curve, the x-axis and the lines $x = 0$ and $x = 0$: 4. [4]
		•••••
		•••••
		••••
		••••
		•••••
		••••
		••••

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/12

Paper 1 Pure Mathematics 1

May/June 2021

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

Express $16x^2 - 24x + 10$ in the form $(4x + a)^2 + b$.	
It is given that the equation $16x^2 - 24x + 10 = k$, where k is a constant	nt, has exactly one ro
	nt, has exactly one ro
It is given that the equation $16x^2 - 24x + 10 = k$, where k is a constant Find the value of this root.	nt, has exactly one ro
Find the value of this root.	
Find the value of this root.	
Find the value of this root.	
Find the value of this root.	
Find the value of this root.	
Find the value of this root.	
Find the value of this root.	
Find the value of this root.	
Find the value of this root.	

2 (a	The graph of $y = f(x)$ is transformed to the graph of $y = 2f(x - 1)$.
	Describe fully the two single transformations which have been combined to give the resultin transformation.
(l	The curve $y = \sin 2x - 5x$ is reflected in the y-axis and then stretched by scale factor $\frac{1}{3}$ in th x-direction.
	Write down the equation of the transformed curve. [2

	A(2, k)	B(2.9, 2.8025)	C(2.99, 2.9800)	D(2.999, 2.9980)	E(3, 3)
(a)	Find k , given	ving your answer co	rrect to 4 decimal plac	es.	[1]
(b)	Find the g	gradient of AE , giving	g your answer correct	to 4 decimal places.	[1]
	gradients ectively.	of BE , CE and DE	, rounded to 4 decin	nal places, are 1.9748,	, 1.9975 and 1.9997
(c)		ing a reason for your		lues of the four gradier	nts suggest about the
	•••••				

$\left(2x + \frac{k}{x^2}\right)^5 \text{ is } q.$	
Given that $p = 6q$, find the possible values of k .	

The function f is defined by $f(x) = 2x^2 + 3$ for $x \ge 0$.

5

(a)	Find and simplify an expression for $ff(x)$.	[2]
		•••••
(b)	Solve the equation $ff(x) = 34x^2 + 19$.	[4]
		•••••
		••••
		•••••
		•••••

T' 1.1 1	c 1					
Find the val	ues of p and q .					
•••••		••••••	••••••	••••••	••••••	••••
•••••		•••••		•••••		 ••••
•••••	•••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	
	•••••					
•••••	•••••	•••••	•••••		•••••	 ••••
					•••••	
		•				
•••••		•••••	•••••	•••••	•••••	 ••••
•••••		•••••		•••••	•••••	 ••••
•••••	•••••	•••••	•••••	•••••	•••••	 ••••
••••••	•••••	••••••	•••••••	• • • • • • • • • • • • • • • • • • • •	•••••	 ••••
•••••					•••••	 ••••
•••••		•••••		•••••		

(b) Find the equation of the other circle of radius $\sqrt{52}$ for which l is also the tangent at A .	[
	• • • • • • • • • • • • • • • • • • • •
	· • • • • • • • • • • • • • • • • • • •
b) Find the equation of the other circle of radius $\sqrt{52}$ for which l is also the tangent at A .	
b) Find the equation of the other circle of radius $\sqrt{52}$ for which l is also the tangent at A .	
	[

(a)	Find the values of a and b .	
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
(b)	Find the sum of the first 20 terms of the arithmetic progression.	
		••••

The diagram shows part of the curve with equation $y^2 = x - 2$ and the lines x = 5 and y = 1. The shaded region enclosed by the curve and the lines is rotated through 360° about the *x*-axis.

Find the volume obtained.	[6]

10	(0)	Duarra tha idantity	$1 + \sin x$	$1 - \sin x$	4 tan <i>x</i>	F.4.1
10	(a)	Prove the identity	$\frac{1-\sin x}{1-\sin x}$	$\frac{1+\sin x}{1+\sin x}$	$\frac{1}{\cos x}$.	[4]
					•••••	
					•••••	
		•••••		••••••	•••••	
		•••••		•••••	•••••	
		•••••	• • • • • • • • • • • • • • • • • • • •	•••••••	••••••	
		•••••	• • • • • • • • • • • • • • • • • • • •	•••••••	•••••	
		•••••	• • • • • • • • • • • • • • • • • • • •	••••••••	••••••	
		••••••	• • • • • • • • • • • • • • • • • • • •	•	•••••••	
					•••••	
					•••••	
					•••••	
		•••••		•••••	•••••	
		•••••		••••••	••••••	
					•••••	
		•••••		•••••••	••••••	
			 			

)	Hence solve the equation	$\frac{1+\sin x}{1-\sin x} -$	$-\frac{1-\sin x}{1+\sin x} =$	$= 8 \tan x \text{ for } 0 \le x \le \frac{1}{2}\pi.$	[3]

11	The stati	gradient of a curve is given by $\frac{dy}{dx} = 6(3x - 5)^3 - kx^2$, where k is a constant. The curve has a onary point at $(2, -3.5)$.							
	(a)	Find the value of k . [2]							
	(b)	Find the equation of the curve. [4]							

(c)	Find $\frac{d^2y}{dx^2}$.	[2]
(d)	Determine the nature of the stationary point at $(2, -3.5)$.	[2]
		•••••
		•••••
		•••••

The diagram shows a cross-section of seven cylindrical pipes, each of radius 20 cm, held together by a thin rope which is wrapped tightly around the pipes. The centres of the six outer pipes are A, B, C, D, E and F. Points P and Q are situated where straight sections of the rope meet the pipe with centre A.

(a)	Show that angle $PAQ = \frac{1}{3}\pi$ radians.	[2]
		· • • • • •
		· • • • • •
(b)	Find the length of the rope.	[4]
		· • • • • •
		· • • • • •
		· • • • • •

Find the area of the hexagon <i>ABCDEF</i> , giving your answer in terms of $\sqrt{3}$.	[2
Find the area of the complete region enclosed by the rope.	[:

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/13

Paper 1 Pure Mathematics 1

May/June 2021

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages. Any blank pages are indicated.

BLANK PAGE

Find $f(x)$.							
					•••••		•••••
							•••••
							••••••
							••••
	•••••	•••••	•••••	••••••••••	••••••		
	•••••	••••••	••••••	•••••••	•••••	•••••	
	•••••	••••••	•••••	••••••	•••••	•••••	,
		••••••	•••••			•••••	•••••
		••••••	•••••	••••••		•••••	
	•••••	••••••	•••••	••••••		•••••	
		••••••	•••••	••••••	•••••		
				••••••		•••••	
						•••••	

Find the m	aximum possib	ole value of t	he constant	a.			
i ma the m	aximam possie	ne varae or t	ne constant				
•••••		••••••	•••••	•••••	•••••	•••••	
							• • • • • • • • • • • • • • • • • • • •
•••••		•••••	•••••	•••••	•••••		
•••••	•••••	••••••	•••••	•••••	•••••		
•••••		•••••		•••••	•••••		
•••••	•••••						
•••••	•••••				•••••		
					•••••		•••••
••••••			•		•••••		
••••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••		

	possible value ouches the cur		istant <i>m</i> , an	d the corre	sponding c	oordinates o	of the point	s at wl
•••••		•••••		•••••				
		•••••		•••••				•••••
								•••••
		•••••						
				•••••				
•••••		•••••		•••••				
		•••••		•••••				
				•••••				
				•••••				
		•••••		•••••				

4	(a)	Charr	that the	e equation
4	(a)	SHOW	mai me	: eauauon

$$\frac{\tan x + \sin x}{\tan x - \sin x} = k,$$

	where k is a constant, may be expressed as	
	$\frac{1+\cos x}{1-\cos x}=k.$	2]
		••
		••
		••
(b)	Hence express $\cos x$ in terms of k .	2]
		••
		••
(c)	Hence solve the equation $\frac{\tan x + \sin x}{\tan x - \sin x} = 4$ for $-\pi < x < \pi$.	2]

The diagram shows a triangle ABC, in which angle $ABC = 90^{\circ}$ and AB = 4 cm. The sector ABD is part of a circle with centre A. The area of the sector is 10 cm^2 .

(a)	Find angle <i>BAD</i> in radians.	[2]
		· • • • • • • • • • • • • • • • • • • •
		· • • • • • • • • • • • • • • • • • • •
		••••••
(b)	Find the perimeter of the shaded region.	[4]
		· • • • • • • •
		· • • • • • • • • • • • • • • • • • • •
		•••••
		• • • • • • •
		•••••
		•••••
		•••••
		•••••

6 Functions f and g are both defined for $x \in \mathbb{R}$ and are given by	6	Functions f and	g are both	defined for a	$x \in \mathbb{R}$ and	are given	by
---	---	-----------------	------------	---------------	------------------------	-----------	----

$$f(x) = x^{2} - 2x + 5,$$

$$g(x) = x^{2} + 4x + 13.$$

(a)	first expressing each of $f(x)$ and $g(x)$ in completed square form, express $g(x)$ in the for $(x+p)+q$, where p and q are constants.					
(b)	Describe fully the transformation which transforms the graph of $y = f(x)$ to the graph of $y = g(x)$ [2]					

7	(a)	Write down the first four terms of the expansion, in ascending powers of x , of $(a-x)^6$. [2]
	(b)	Given that the coefficient of x^2 in the expansion of $\left(1 + \frac{2}{ax}\right)(a-x)^6$ is -20 , find in exact form
		the possible values of the constant a . [5]

Functions f and g are defined as follows:

f:
$$x \mapsto x^2 - 1$$
 for $x < 0$,
g: $x \mapsto \frac{1}{2x+1}$ for $x < -\frac{1}{2}$.

Solve the equation $fg(x) = 3$.	

)	Find an expression for $(fg)^{-1}(x)$.	[3]

9	(a)	A geometric progression is such that the second term is equal to 24% of the sum to infin	nity.
		Find the possible values of the common ratio.	[3]
			•••••
			•••••
			•••••
			•••••
			•••••
			•••••
			•••••

(b) An arithmetic progression P has first term a and common difference d. An arithmetic progression

	$\frac{5\text{th term of }P}{12\text{th term of }Q} = \frac{1}{3}$	and	Sum of first 5 terms of P	= 2
	12th term of $Q = 3$	ana	$\frac{\text{Sum of first 5 terms of } T}{\text{Sum of first 5 terms of } Q} = \frac{\text{Sum of first 5 terms of } T}{\text{Sum of first 5 terms of } Q}$	3.
Find the va	lue of a and the value of	of <i>d</i> .		
••••••				
•••••		•••••		
•••••		•••••		
		•••••		
		•••••		
		•••••		
•••••		•••••		
•••••		•••••		
		•••••		
		•••••		
••••••		•••••		
••••••		•••••		
		•••••		

(a)	Show that angle $ABC = 90^{\circ}$.	[2]
` /		
		•••••
		••••••
(b)	Hence state the coordinates of D .	[1]
		••••••
		•••••
(c)	Find an equation of the circle.	[2]
(-)	The an equation of the choice	(-)
		•••••

The point E lies on the circumference of the circle such that BE is a diameter. [5] (d) Find an equation of the tangent to the circle at E.

The diagram shows part of the curve with equation $y = x^{\frac{1}{2}} + k^2 x^{-\frac{1}{2}}$, where k is a positive constant.

(a)	Find the coordinates of the minimum point of the curve, giving your answer in terms of k . [4]

The tangent at the point on the curve where $x = 4k^2$ intersects the y-axis at P. [4] (b) Find the y-coordinate of P in terms of k. The shaded region is bounded by the curve, the x-axis and the lines $x = \frac{9}{4}k^2$ and $x = 4k^2$. (c) Find the area of the shaded region in terms of k. [3]

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/11

Paper 1 Pure Mathematics 1

October/November 2021

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages. Any blank pages are indicated.

BLANK PAGE

(a)	Expand $\left(1-\frac{1}{2x}\right)^2$.	
		•••••
(b)	Find the first four terms in the expansion, in ascending powers of x , of $(1 + 2x)^6$.	•••••
(D)	This the first roul terms in the expansion, in ascending powers of x , or $(1 + 2x)$.	
		•••••
		•••••
		•••••
(c)	Hence find the coefficient of x in the expansion of $\left(1 - \frac{1}{2x}\right)^2 (1 + 2x)^6$.	
		•••••

Find the set of values of k for which the curve and line do not interse	ect. [:

3	Solve.	by	factorising,	the e	guation

$6\cos\theta\tan\theta - 3\cos\theta + 4\tan\theta - 2 = 0,$					
for $0^{\circ} \le \theta \le 180^{\circ}$.	[4]				
	••••••				
	•••••••••••••••••••••••••••••••••••••••				
	••••••				
	•••••••••••••••••••••••••••••••••••••••				
	•••••••••••••••••••••••••••••••••••••••				
	•••••••••••				
	•••••••••••••••••••••••••••••••••••••••				

The first term of an arithmetic progression is a and the common difference is -4. The first term

	Find the value of <i>a</i> .	[4
he	<i>k</i> th term of the arithmetic progression is zero.	
	kth term of the arithmetic progression is zero. Find the value of k .	[2
		[2
		[2
		[2
		[2
		[2
		[2

The diagram shows part of the graph of $y = a\cos(bx) + c$.

(a)	Find the values of the positive integers a , b and c .	[3]	
		•••••	
		•••••	
		•••••	

(b) For these values of a, b and c, use the given diagram to determine the number of solutions in the interval $0 \le x \le 2\pi$ for each of the following equations.

$$(i) \ a\cos(bx) + c = \frac{6}{\pi}x$$

(ii)
$$a\cos(bx) + c = 6 - \frac{6}{\pi}x$$
 [1]

The diagram shows a metal plate ABC in which the sides are the straight line AB and the arcs AC and BC. The line AB has length 6 cm. The arc AC is part of a circle with centre B and radius 6 cm, and the arc BC is part of a circle with centre A and radius 6 cm.

Find the perimeter of the plate, giving your answer in terms of π .	[3
	•••••

								•••••
••••••	••••••••		•••••••	••••••	••••••	•••••••	••••••	•••••••
								•••••
•••••	••••••		••••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	••••••	•••••
•••••	•••••		••••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	••••••	••••••
•••••	•••••	•••••••		• • • • • • • • • • • • • • • • • • • •	••••••	••••••	••••••	••••••
•••••	•••••			• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	••••••
•••••	•••••	••••••		• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	••••••
•••••	••••••			•••••	•••••	•••••	•••••	••••••
•••••					•••••		•••••	••••••
•••••		•••••				•••••	•••••	•••••
								••••••

	Find an equation of the circle.	[2]
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
e l	line $y = 5x - 10$ intersects the circle at A and B.	
	line $y = 5x - 10$ intersects the circle at A and B . Find the exact length of the chord AB .	[7]
		[7]
		[7]
		[7]
		[7]
		[7]
		[7]
		[7]
		[7]
		[7]

		••••••
		••••••
The	e one-one function f is defined by $f: x \mapsto -3x^2 + 12x + 2$ for $x \le k$.	
	e one-one function f is defined by $f: x \mapsto -3x^2 + 12x + 2$ for $x \le k$. State the largest possible value of the constant k .	
(b)	State the largest possible value of the constant <i>k</i> .	
(b)	State the largest possible value of the constant k . s now given that $k = -1$.	
(b)	State the largest possible value of the constant <i>k</i> .	
(b)	State the largest possible value of the constant k . s now given that $k = -1$.	
(b)	State the largest possible value of the constant k . s now given that $k = -1$.	

(d)	Find an expression for $f^{-1}(x)$.	[3]
		••••••
		••••••
The	result of translating the graph of $y = f(x)$ by $\begin{pmatrix} -3 \\ 1 \end{pmatrix}$ is the graph of $y = g(x)$.	
	Express $g(x)$ in the form $px^2 + qx + r$, where p , q and r are constants.	[3]
		••••••
		••••••

(Given that $f(1) = -\frac{1}{3}$, find $f(x)$.	
•		
		••••••
•		
•		
•		
•		••••••••
•		••••••••••
•		
•		

(b)	Find the coordinates of the stationary points on the curve.	[5]
(c)	Find $f''(x)$.	[1]
(d)	Hence, or otherwise, determine the nature of each of the stationary points.	[2]

10	(a)	Find \int_{1}^{6}	$\int_{1}^{\infty} \frac{1}{(3x-2)^{\frac{3}{2}}} \mathrm{d}x.$	[4]

The diagram shows the curve with equation $y = \frac{1}{(3x-2)^{\frac{3}{2}}}$. The shaded region is bounded by the curve, the *x*-axis and the lines x = 1 and x = 2. The shaded region is rotated through 360° about the *x*-axis.

(b)	Find the volume of revolution.	[4]

•••••		•••••			
•••••					
•••••					
•••••	•••••	• • • • • • • • • • • • • • • • • • • •		•••••	•••••
•••••	•••••	• • • • • • • • • • • • • • • • • • • •		••••••	•••••••••
		oint (1, 1) crosse	es the y-axis at	the point A .	
	e curve at the position A .		es the y-axis at	the point A .	
			es the y-axis at	the point A .	
			es the y-axis at	the point A.	
			es the y-axis at	the point A.	
			es the y-axis at	the point A.	
			es the y-axis at	the point A.	
			es the y-axis at	the point A.	
			es the y-axis at	the point A.	
			es the y-axis at	the point A.	
			es the y-axis at	the point A.	
			es the y-axis at	the point A.	
			es the y-axis at	the point A.	
			es the y-axis at	the point A.	
			es the y-axis at	the point A.	
			es the y-axis at	the point A.	
			es the y-axis at	the point A.	
			es the y-axis at	the point A.	
			es the y-axis at	the point A.	
			es the y-axis at	the point A.	
			es the y-axis at	the point A.	
			es the y-axis at	the point A.	
			es the y-axis at	the point A.	
			es the y-axis at	the point A.	

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s must be clearly shown.	;)
	••
	••
	••
	••
	••
	••
	••
	••

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/12

Paper 1 Pure Mathematics 1

October/November 2021

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages.

Solve the equation $2\cos\theta = 7 - \frac{1}{2}$	$\cos \theta$	[4]

a)	Describe fully the two single transformations that have been combined to give the transformation.	he resulting [3]
1	resint D(5, 6) lies on the transformed comes of 5(2a) 2	
	e point $P(5, 6)$ lies on the transformed curve $y = f(2x) - 3$. State the coordinates of the corresponding point on the original curve $y = f(x)$.	
	e point $P(5, 6)$ lies on the transformed curve $y = f(2x) - 3$.	[2]
	e point $P(5, 6)$ lies on the transformed curve $y = f(2x) - 3$. State the coordinates of the corresponding point on the original curve $y = f(x)$.	[2
	e point $P(5, 6)$ lies on the transformed curve $y = f(2x) - 3$. State the coordinates of the corresponding point on the original curve $y = f(x)$.	[2
	e point $P(5, 6)$ lies on the transformed curve $y = f(2x) - 3$. State the coordinates of the corresponding point on the original curve $y = f(x)$.	[2
	e point $P(5, 6)$ lies on the transformed curve $y = f(2x) - 3$. State the coordinates of the corresponding point on the original curve $y = f(x)$.	[2
	e point $P(5, 6)$ lies on the transformed curve $y = f(2x) - 3$. State the coordinates of the corresponding point on the original curve $y = f(x)$.	[2
	e point $P(5, 6)$ lies on the transformed curve $y = f(2x) - 3$. State the coordinates of the corresponding point on the original curve $y = f(x)$.	[2
	e point $P(5, 6)$ lies on the transformed curve $y = f(2x) - 3$. State the coordinates of the corresponding point on the original curve $y = f(x)$.	[2]
	e point $P(5, 6)$ lies on the transformed curve $y = f(2x) - 3$. State the coordinates of the corresponding point on the original curve $y = f(x)$.	[2

•	TD1 C 4	с.	1 (1	C 11
3	The function	T 10	пеппеп	as tollows:

$$f(x) = \frac{x+3}{x-1} \text{ for } x > 1.$$

(a)	Find the value of $ff(5)$.	[2]
(b)	Find an expression for $f^{-1}(x)$.	[3]
(,-)	(v)	[-]
		•••••
		••••••
		••••••
		•••••
		••••••
		••••••
		•••••

© UCLES 2021

	rve is suc											
Find	the equa	tion of 1	the cur	ve.								
		•••••			•••••			•••••			•••••	
•••••	••••••	•••••	••••••	•••••	••••••	••••••	•••••	•••••	•••••	•••••		
•••••					•••••			•••••				•••••
•••••	••••••	•••••		• • • • • • • • • • • • • • • • • • • •	••••••	••••••	••••••	•••••	••••••	••••••		
					•••••						•••••	
•••••	••••••	•••••	••••••	••••••	••••••	•••••••	••••••	•••••	••••••	••••••	••••••	
•••••	•••••	•••••		•••••	•••••	•••••		•••••	•••••	•••••	•••••	
		•••••						•••••			•••••	
											•••••	
•••••	••••••	•••••	••••••	••••••	••••••	••••••	••••••	•••••	••••••	••••••	•••••	••••
								•••••				••••
											•••••	••••
•••••	•••••	•••••	••••••	••••••	•••••	••••••	•••••	•••••	••••••	••••••		•••••
		•••••				•••••						•••••
											•••••	
••••••	••••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	••••••	••••••	•••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	
•••••	••••••	•••••			••••••	•••••		•••••	••••••			•••••

u)	Find the exact value of x .	[3]
ı)	Hence find the exact sum of the first 25 terms of the progression.	[3
)	Hence find the exact sum of the first 25 terms of the progression.	[3]
)	Hence find the exact sum of the first 25 terms of the progression.	[3
))	Hence find the exact sum of the first 25 terms of the progression.	[3
)	Hence find the exact sum of the first 25 terms of the progression.	[3
)	Hence find the exact sum of the first 25 terms of the progression.	[3]
	Hence find the exact sum of the first 25 terms of the progression.	[3
b)	Hence find the exact sum of the first 25 terms of the progression.	[2

Find the tenth term, giving your answer in exact form.	[5

In the diagram the lengths of AB and AC are both 15 cm. The point P is the foot of the perpendicular from C to AB. The length CP = 9 cm. An arc of a circle with centre B passes through C and meets AB at Q.

(a)	Show that angle $ABC = 1.25$ radians, correct to 3 significant figures. [2]

PQ.									
•••••				•••••					
••••••	••••••		••••••	••••••	••••••	••••••		• • • • • • • • • • • • • • • • • • • •	••••••
•••••									
•••••					•••••				
••••••			•••••	•••••	•••••		•••••	•••••	••••••
•••••									
•••••									
•••••			••••••	•••••	•••••		•••••	• • • • • • • • • • • • • • • • • • • •	••••••
••••••	•••••		••••••	•••••				•	••••••
		• • • • • • • • • • • • • • • • • • • •							
			•••••						
••••••	•••••		•••••	•••••	•••••			• • • • • • • • • • • • • • • • • • • •	••••••
•••••									
•••••					•••••				
•••••	•••••		••••••	•••••	•••••		•••••	• • • • • • • • • • • • • • • • • • • •	•••••
•••••									
•••••									
••••••	•••••		•••••	•••••	•••••			• • • • • • • • • • • • • • • • • • • •	••••••

							,		
	•••••				•••••				
•••••	•••••		•••••	•••••	•••••				•••••

3	(a)	It is given that in the expansion of $(4 + 2x)(2 - ax)^5$, the coefficient of x^2 is -15 .	
		Find the possible values of <i>a</i> .	[4]
			•••
			•••
			•••
			•••
			•••
			•••
			•••
			•••
			•••
			•••
			•••
			•••
			•••
			•••
			•••
			•••
			•••
			•••
			•••
			•••
			•••

given that there is only one value of a which leads to this value of k .						
	Find the values of k and a .					
		•••				
		•••				
		•••				
		•••				
		•••				
		•••				
		•••				
		•••				
		•••				
		•••				
		•••				
		•••				
		•••				

)	Find the rate at which the radius of the mound is increasing at the instant when the radius is

••••••			•••••	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	
••••••	••••••	•	••••••	••••••	••••••	••••••	••••••	••••••	
•••••				•••••					
•••••	•••••		•••••	•••••	•••••	•••••	•••••	•••••	
	•••••								
••••••	••••••	•	••••••	••••••	••••••	••••••	••••••	••••••	
•••••				•••••					
••••••			•••••	•••••	••••••	••••••	•••••		
	•••••			•••••	•••••		•••••		
•••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	••••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
				•••••					
•••••			•••••	• • • • • • • • • • • • • • • • • • • •	••••••		•••••	• • • • • • • • • • • • • • • • • • • •	
	•••••								
					•••••				

10	The	function f is defined by $f(x) = x^2 + \frac{k}{x} + 2$ for $x > 0$.
	(a)	Given that the curve with equation $y = f(x)$ has a stationary point when $x = 2$, find k . [3]

			•••••	••••••	•••••
••••••	••••••	•••••••	••••••	••••••	
Given that this	is the only stat	ionary point of	the curve, find	the range of f.	
Given that this	is the only stat	ionary point of	the curve, find	the range of f.	
Given that this	is the only stat	ionary point of	the curve, find	the range of f.	
Given that this	is the only stat	ionary point of	the curve, find	the range of f.	
Given that this	is the only stat	ionary point of	the curve, find	the range of f.	
Given that this	is the only stat	ionary point of	the curve, find	the range of f.	
Given that this	is the only stat	ionary point of	the curve, find	the range of f.	
Given that this	is the only stat	ionary point of	the curve, find	the range of f.	
Given that this	is the only stat	ionary point of	the curve, find	the range of f.	
Given that this	is the only stat	ionary point of	the curve, find	the range of f.	
Given that this	is the only stat	ionary point of	the curve, find	the range of f.	
Given that this	is the only stat	ionary point of	the curve, find	the range of f.	

The diagram shows the line $x = \frac{5}{2}$, part of the curve $y = \frac{1}{2}x + \frac{7}{10} - \frac{1}{(x-2)^{\frac{1}{3}}}$ and the normal to the curve at the point $A\left(3, \frac{6}{5}\right)$.

Find the x-coordinate of the point where the normal to the curve meets the x -axis.	[5]
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••

 •••••
•••••
 •••••
•••••
•••••
•••••
•••••
•••••
•••••

The diagram shows the circle with equation $x^2 + y^2 - 6x + 4y - 27 = 0$ and the tangent to the circle at the point P(5, 4).

(a) The tangent to the circle at P meets the x-axis at A and the y-axis at B.

Find the area of triangle OAB , where O is the origin.	[5]

	Points Q and R also lie on the circle, such that PQR is an equilateral triangle.		
	Find the exact area of triangle PQR .		
•			

Additional Page

f you use the following lined page to complete the answer(s) to any question(s), the question number(s) nust be clearly shown.				
	•••••			
	•••••			
	•••••			
	•••••			
	•••••			
	••••••			
	•••••			
	•••••			
	••••••			

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/13

Paper 1 Pure Mathematics 1

October/November 2021

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages. Any blank pages are indicated.

Describe fully,	in the correct orde	er, the two trans	formations that l	have been combined.	[4
					•••••
					•••••
••••••					
•••••	••••••	•••••			•••••
		•••••			•••••
		•••••			•••••

2 (a	a)	Find the first three terms, in ascending powers of x , in the expansion of $(1 + ax)^6$. [1]
(l		Given that the coefficient of x^2 in the expansion of $(1-3x)(1+ax)^6$ is -3 , find the possible values of the constant a . [4]

3 (a)	Express $5y^2 - 30y + 50$ in the form $5(y + a)^2 + b$, where a and b are constants.	[2]
		· • • •
		.
		.
		· • • •
		· • • •
(b)	The function f is defined by $f(x) = x^5 - 10x^3 + 50x$ for $x \in \mathbb{R}$.	
	Determine whether f is an increasing function, a decreasing function or neither.	[3]
		••••
		•••
		· • • •
		· • • •
		· • • •
		· • • •
		· • • •
		· • • •
		· • • •
		· • • •
		· • • •
		· • • •
		· • • •

(a)	Find the smallest value of n for which the n th term is negative.	[:
	given that the sum of the first $2k$ terms of this progression is equal to the suffind the value of k .	of the first k term
	Find the value of k .	
	Find the value of <i>k</i> .	
	Find the value of <i>k</i> .	
	Find the value of <i>k</i> .	I
	Find the value of <i>k</i> .	I
	Find the value of <i>k</i> .	
	Find the value of <i>k</i> .	
	Find the value of <i>k</i> .	
	Find the value of <i>k</i> .	

In the diagram, X and Y are points on the line AB such that BX = 9 cm and AY = 11 cm. Arc BC is part of a circle with centre X and radius 9 cm, where CX is perpendicular to AB. Arc AC is part of a circle with centre Y and radius Y and Y cm.

(a)	Show that angle $XYC = 0.9582$ radians, correct to 4 significant figures.	[1]
		•••
		•••
		•••
		•••
		•••
		•••
		•••
		•••
		•••
		•••
		•••
		•••
		•••
		•••

)	Find the perimeter of ABC .	[6]
		•••••
		•••••

6

The diagram shows the graph of y = f(x).

(a) On this diagram sketch the graph of $y = f^{-1}(x)$. [1]

It is now given that $f(x) = -\frac{x}{\sqrt{4 - x^2}}$ where -2 < x < 2.

(b)	Find an expression for $f^{-1}(x)$. [4]

Th.	function a is defined by $g(x) = 2x \text{ for } x \in X \text{ and } x = x \text{ is a constant}$
The	function g is defined by $g(x) = 2x$ for $-a < x < a$, where a is a constant.
(c)	State the maximum possible value of a for which fg can be formed. [1]
(d)	Assuming that fg can be formed, find and simplify an expression for $fg(x)$. [2]

7	(a)	Show that the equation	$\frac{\tan x + \cos x}{\tan x - \cos x} = k$, where k is a constant, can be expressed as
			$(k+1)\sin^2 x + (k-1)\sin x - (k+1) = 0.$ [4]

Hence solve the	$\tan x$	$-\cos x$				
•••••	••••••	•••••	•••••	•••••	•••••	· • • • • • • • • • • • • • • • • • • •
	••••••	••••••	•••••	••••••	••••••	· • • • • • • • • • • • • • • • • • • •
		•••••				
•••••		•••••	•••••	•••••	•••••••••••••••••••••••••••••••••••••••	,
	••••••	••••••	•••••	••••••	•••••	· • • • • • • • • • • • • • • • • • • •
••••	••••••	••••••	•••••	•••••	•••••	,
•••••	••••••	••••••	••••••	••••••		•
		••••••	•••••			,

8

The diagram shows the curves with equations $y = x^{-\frac{1}{2}}$ and $y = \frac{5}{2} - x^{\frac{1}{2}}$. The curves intersect at the points $A(\frac{1}{4}, 2)$ and $B(4, \frac{1}{2})$.

(a)	Find the area of the region between the two curves.	[6]
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••

Find the value of p .	
	•••••
	•••••
	••••••
	•••••
	••••
	•••••

The line y = 2x + 5 intersects the circle with equation $x^2 + y^2 = 20$ at A and B.

9

	Find the coordinates of A and B in surd form and hence find the exact length of the chord
••	
••	
••	
••	
••	
••	
••	
••	
••	
••	
••	
••	
••	

A straight line through the point (10, 0) with gradient m is a tangent to the circle.

	ind the two possible values of m .	
•••		
•••		
•••		
•••		

10	A curve has ed	quation $y = f($	(x) and it i	s given that
----	----------------	------------------	--------------	--------------

$$f'(x) = (\frac{1}{2}x + k)^{-2} - (1 + k)^{-2},$$

where k is a constant. The curve has a minimum point at x = 2.

	Find $f''(x)$ in terms of k and x , and hence find the set of possible values of k .	[3]
is	s now given that $k = -3$ and the minimum point is at $(2, 3\frac{1}{2})$.	
	now given that $k = -3$ and the minimum point is at $(2, 3\frac{1}{2})$. Find $f(x)$.	[4
	Find $f(x)$.	

		•
		•
		•
		•
		•
		•
(c)	Find the coordinates of the other stationary point and determine its nature. [4]
		•
		•
		•
		•
		•
		•
		•
		•
		•
		•
		•
		•

Additional Page